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Abstract
Sediment transport, an important element of the erosion‒sedimentation cycle, can be very 
high during extreme flood events and can cause hydromorphological changes within river 
networks. Therefore, improved sediment transport predictions are needed to establish sedi-
ment management at the catchment scale. A machine learning model (i.e., XGBoost) and 
a sediment rating curve method were tested for predicting the suspended sediment load in 
the Sora River catchment in Slovenia. The evaluation of the models based on the histori-
cal data for 2016–2021 revealed that XGBoost outperformed the sediment rating curve 
model and resulted in a lower bias (i.e., approximately 15%). The XGBoost model was 
used to predict future suspended sediment load dynamics. Three representative concentra-
tion pathway (RCP) scenarios (RCP2.6, RCP4.5, and RCP8.5) and several climate change 
models were used. The rainfall–runoff model was set up, calibrated, validated and applied 
to simulate future daily discharge data, as this was the required input for the XGBoost 
and sediment rating curve models. The simulation results indicate that suspended sediment 
load is expected to increase in the future in the range 15–20% under both the RCP4.5 and 
RCP8.5 scenarios. Additionally, the number of days with a suspended sediment concen-
tration (SSC) greater than 25 mg/l, which is often used an indicator of inadequate water 
quality, is expected to increase by 2–4%, whereas some models indicate an increase of up 
to 8%. Erosion and sediment management mitigation measures need to be applied in the 
future to ensure adequate water quality and good ecological status of the river.

Highlights
 ● • Sediment transport was modelled using the XGBoost algorithm and a sediment rating 

curve.
 ● • XGBoost outperformed the sediment rating curve model.
 ● • The impact of climate change on sediment transport was investigated.
 ● • The suspended sediment load is expected to increase in the future to 15–20%.
 ● • The number of days with suspended sediment concentrations greater than 25 mg/L 

will also increase.

Keywords Suspended sediment load · Future prediction · Climate change · Machine 
learning · Sediment rating curve · Rainfall–runoff model · Sediment management
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1 Introduction

The transport of suspended load and bedload in natural rivers is a crucial aspect of geomor-
phological processes on Earth (Lopez-Tarazon et al. 2009; Turowski et al. 2010; Barberena 
et al. 2023) and plays a central role in shaping riverine landscapes, aquatic ecosystems 
and even coastal areas. Suspended sediment transport is a complex phenomenon influenced 
by a variety of dynamic factors (Kisi et al. 2008; Bezak et al. 2017; Cendrero et al. 2022; 
Gardner et al. 2023), including precipitation patterns, land-use change, vegetation cover, 
and anthropogenic activities (Gholami et al. 2023). In the headwaters of alpine catchments, 
different torrential hazards, such as landslides or debris flows, occur during heavy rainfall 
events (Sodnik et al. 2023). This type of event generates much material that is a potential 
sediment supply source and can be transported during extreme events (Bezak et al. 2023). In 
alpine countries such as Slovenia, damage to infrastructure, such as roads, bridges, and cul-
verts, and damage to residential, industrial, and agricultural buildings and other infrastruc-
ture resulting from erosion–sedimentation processes are common. Therefore, enhancing the 
knowledge of sediment transport to ensure adequate input data for sediment management 
(Khaleghi and Varvani 2018; Afan et al. 2024) and erosion mitigation in headwater parts of 
catchments is crucial.

Extreme torrential hazards such as flash floods or debris flows are expected to become 
more common due to changing climate patterns and extreme weather events (Nam et al. 
2019; Jemec Auflič et al. 2021; Panagos et al. 2022). For example, climate scenarios predict 
an increase in the occurrence of heavy rainfall events (Burt et al. 2016; Panagos et al. 2022), 
which can trigger landslides, cause erosion processes and lead to intense sediment transport. 
The extent of damage to various infrastructure and buildings caused by torrential floods and 
similar hazards and the associated erosion processes are increasing worldwide and in Slo-
venia (Bezak et al. 2023; Sodnik et al. 2023). Torrential hazards are very problematic in the 
design of engineering structures for natural hazard mitigation (Sodnik et al. 2023). These 
climate-driven changes have the potential to exacerbate erosion, sedimentation, and geo-
morphic instability in many catchments worldwide. Thus, there is an urgent need to develop 
robust and adaptive predictive models capable of predicting suspended sediment transport 
under the influence of changing climate conditions for areas where sediment transport is 
important for water resource management (Brilly 2010; Wu and Chen 2012; Nones 2019; 
Afan et al. 2024).

Recent advances in machine learning (ML) algorithms combined with the availability 
of high-resolution spatial and temporal datasets provide an unprecedented opportunity to 
improve our ability to model and predict the dynamics of sediment transport (Khaleghi and 
Varvani 2018; Varvani and Khaleghi 2019; Sharghi et al. 2019; Grangeon et al. 2023; Hos-
seiny et al. 2023; Piraei et al. 2023; Sahoo et al. 2023; Shakya et al. 2023; Afan et al. 2024; 
Baharvand and Ahmari 2024; Efthimiou 2024). Unlike traditional analysis methods, which 
often rely on simplifying assumptions and linear or logarithmic relationships (Harrington 
and Harrington 2013; Isik 2013; Bezak et al. 2017; Khaleghi and Varvani 2018), machine 
learning methods are capable of capturing complex, nonlinear interactions within the data 
(Kisi et al. 2008; Rajaee et al. 2009). This allows researchers, water managers and engineers 
to uncover hidden patterns and make accurate predictions even in the face of complex ero-
sion and sedimentation processes (Betrie et al. 2011; Varvani and Khaleghi 2019).
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Therefore, the main objective of this study is to expand our knowledge of suspended 
sediment transport in a typical alpine catchment over the coming decades. The specific 
objectives of the study are as follows: (i) to evaluate the performance of the sediment rating 
curve model compared with a machine learning algorithm (i.e., XGBoost) based on his-
torical data; and (ii) to evaluate potential future changes in hydrological processes and sus-
pended sediment transport rates using the combined rainfall‒runoff and machine learning 
model up to the year 2100 based on the three representative concentration pathways (RCPs) 
(i.e., RCP2.6, RCP4.5, and RCP8.5). Hence, the main novelty of this study is that the impact 
of climate change on sediment transport is evaluated using a combination of rainfall-runoff 
modelling and machine learning technique. Although several studies have used machine 
learning techniques, only a limited number of studies have focused on future predictions 
under multiple RCP scenarios. Additionally, to the best of the authors’ knowledge, XGBoost 
has not yet been used to simulate future suspended sediment load.

2 Materials and Methods

2.1 Case Study and Historical Data

The Sora River catchment up to the Suha gauging station (Fig. 1), which is operated by 
the Slovenian Environment Agency, was used in this study to assess the impact of climate 
change on suspended sediment transport rates under three RCP scenarios. The Sora River 
exhibits a typical rain–snow–water regime, with a pronounced first runoff peak in late fall 
(October–December) and a second runoff peak in spring (March–April). The fall discharge 
peak is the result of prolonged fall precipitation, when most of the rain falls in the Alpine–
Dinaric mountains (Frantar and Hrvatin 2005), whereas the second discharge peak is the 
result of snowmelt in the mountains and spring precipitation. The summer low-flow periods 
are often very pronounced, whereas the winter low-flow periods are less pronounced, as it 
rains more frequently in the mountainous regions of western Slovenia, even in the winter 
months. Due to the increase in air temperature, winter snow precipitation is decreasing 
(Mikoš et al. 2022). The Sora River is a typical torrential stream, and flooding is frequent in 
this catchment (Rusjan et al. 2009; Bezak et al. 2023). The geological features of the study 
area are heterogeneous, with limestone predominating and some karst features (Zanon et al. 
2010). These geological characteristics were found to have important impacts on the genera-
tion of flood events (Zanon et al. 2010). Parts of the catchment are also composed of highly 
erodible rocks (Ribičič et al. 2003), which, in combination with the high rainfall erosivity 
in this area (Panagos et al. 2022), present important sources of fluvial sediments. This leads 
to relatively intense sediment transport dynamics and high sediment transport rates. More-
over, parts of the catchment also have a relatively high possibility of landslide occurrence 
(Ribičič et al. 2003; Auflič et al. 2021).

The period from 2016 to 2021 was used for the calibration and validation of the hydro-
logical model (Sect. 2.3), the sediment rating curve and the machine learning model 
(Sect. 2.3 and 2.4), as measurements of suspended sediment concentrations are available 
for this period. All the data were available at daily time steps (Table S1). The measurements 
of the suspended sediment concentrations were performed with the Hach Solitax_sc sensor, 
and the suspended sediment concentrations were derived based on the relationship between 
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turbidity and the suspended sediment concentration, which was derived based on manual 
regular suspended sediment sampling (Ulaga 2020). The catchment and part of the data are 
also included in the EUSEDcollab dataset (Matthews et al. 2023). To derive the catchment-
averaged precipitation, the Thiessen polygon method was used based on the eight precipita-
tion stations shown in Fig. 1. The Topol station was used for the air temperature data, as it 
was the only station for which air temperature data were available (Fig. 1). The 2016–2020 
data period was used to calibrate the sediment rating curve and machine learning models, 
and the year 2021 was used to test (i.e., validate) the performance of these two methods 
(Figure S1). We used the coefficient of determination (R2), percentage bias (PB), Nash–
Sutchliffe efficiency (NSE) and root mean square error (RMSE) criteria to evaluate the 
performance of the tested models (Zambrano 2017).

2.2 Climate Change Data

To assess the impact of climate change on suspended sediment concentration, we used 
the downscaled and bias-corrected data produced by the Slovenian Environment Agency 
(ARSO) (Bertalanič et al. 2018) (Figure S1). This study analysed the bias-corrected ensem-
ble of regional climate model projections from the EURO-CORDEX database (Sezen et al. 

Fig. 1 Map of the study area with the locations of the precipitation (red circle) and discharge (white box) 
gauging stations and the digital elevation model (DEM) as a background
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2020). ARSO used bias correction with nonparametric quantile mapping using empirical 
quantiles (Gudmundsson et al. 2012) with a 61-day moving window for each grid cell. 
A more detailed description of the bias-correction procedure can be found in Sezen et al. 
(2020). The spatial resolution of the data is 1 km (Jemec Auflič et al. 2021). These data 
have already been used in several studies on climate change with a focus on Slovenia, e.g., 
investigations of low and high water discharges in karst areas in Slovenia (Sapač et al. 2019) 
and studies of rain-on-snow floods in Slovenia (Sezen et al. 2020). For this study, we used 
six different combinations of global climate models (GCMs) and regional climate models 
(RCMs), namely, GCM/RCM models, as shown in Table S2. Three different representative 
concentration pathway (RCP) scenarios were used. The daily precipitation and mean daily 
air temperature data were available for all 14 models listed in Table S2. A data period from 
1981 to 2100 was examined. The period from 1981 to 2020 was used as the past (i.e., refer-
ence) period, and the periods from 2021 to 2060 and 2061–2100 were used as future periods 
(i.e., near- and far-future, respectively).

2.3 Hydrological Model and Sediment Rating Curve

Because the climate projections (Sect. 2.2) include only precipitation and air temperature 
and discharge data are also needed to predict the suspended sediment load, we also set 
up a rainfall‒runoff model with a daily time step (Figure S1). For this purpose, the GR6J 
CemaNeige model was used (Coron et al. 2017, 2018). The GR6J model (Pushpalatha et al. 
2011) is an enhanced (improving low-flow simulations) version of the GR4J (Génie Rural 
à 4 paramètres Journalier) model (Perrin et al. 2003) that was developed with the aim of 
robustly modelling rainfall–runoff processes using a relatively small number of parameters 
(i.e., GR4J uses 4 parameters and GR6J uses six parameters). The model structure can be 
found in Perrin et al. (2003) or Pushpalatha et al. (2011). The input data used in the GR4J 
model are precipitation (P) and potential evapotranspiration (E). E is a function of air tem-
perature (T) and was calculated in this study using the Oudin equation (Oudin et al. 2005). 
Additionally, we used the CemaNeige snow module (Valery et al. 2014a, b) to correctly 
capture snow accumulation and melting within the catchment. The CemaNeige model is 
a semidistributed snow calculation routine that implements a snow melt factor and a cold 
content factor (Valery et al. 2014a, b). The required inputs are P and T. The catchment is 
divided into five equal elevation zones. The CemaNeige model uses two additional param-
eters (Valery et al. 2014a, b). The CemaNeige model additionally requires a catchment hyp-
sometric curve to derive the elevation zones. In this study, a digital elevation model (DEM) 
with 20 m spatial resolution was used. The percentage of snowmelt (relative to total annual 
precipitation) was calculated using an empirical equation derived by Alexopoulos et al. 
(2023). In total, the CemaNeige GR6J model used eight model parameters to predict the 
future daily discharge values for the multiple climate change scenarios and models shown 
in Table S2. The CemaNeige GR6J model was calibrated with data from 2017 to 2021, and 
2016 was used for model warm-up. CemaNeige GR6J model calibration was performed 
using the methodology proposed by Michel (1991), which is implemented in the R software 
package airGR (Coron et al. 2017). We chose the Nash‒Sutcliffe (NS) coefficient (Nash and 
Sutcliffe 1970) as the efficiency criterion for model calibration. The calibrated model was 
used to predict the daily discharge based on P and T for the selected GCM/RCM models 
(Table S2; Figure S1).

1 3



N. Bezak et al.

The following equation was used for the sediment rating curve model:

 SSC = a∗Q2 + b ∗ Q + c  (1)

where the suspended sediment concentration (SSC) is the daily suspended sediment concen-
tration in mg/l, Q is the discharge and a, b, and c are parameters that were estimated from the 
measured data for the period 2016–2020. The nonlinear least squares method was used to 
estimate the a, b, and c coefficients. The 2021 period was used to evaluate the performance 
of the sediment rating curve model (Figure S1). The workflow for evaluating the climate 
change prediction for the suspended sediment load is shown in Figure S1.

2.4 XGBoost Model

In addition to the sediment rating curve mode, we also applied the XGBoost (eXtreme 
Gradient Boosting) algorithm (Chen and Guestrin 2016) to predict future suspended sedi-
ment rates (Figure S1). This model was selected because it has not yet been tested for the 
prediction of the future suspended sediment load in alpine catchments. The model has sev-
eral positive characteristics such as high performance, handling missing data, scalability, 
regularization, etc. XGBoost is an ensemble learning method, i.e., it combines the predic-
tions of several weaker models (usually decision trees) to create a stronger, more accurate 
model. It uses a gradient boosting framework, which is an iterative approach to gradually 
improve the predictive power of the model. Python 3.10 was used for modelling. The mod-
elling structure of XGBoost consists of five key components (Chen and Guestrin 2016) and 
is described in detail in the Supplement. The goal of XGBoost is to find the optimal set of 
model parameters (tree structures and leaf values) that minimize this objective function:

 obj =
∑ n

i=1
loss(xi,

−
xi) +

∑ K

k=1
ϕ (fk) (2)

where n is the number of samples, xi is the i-th real sample, 
−
xi is the i-th output, K is the 

number of trees, fk is the mapping from the sample to the leaf in the k-th tree, loss(.) quanti-
fies the model’s prediction error (the mean squared error is used in this study), and ϕ (.) is 
a penalty term that discourages complex models (L1 is used in this study). This involves an 
iterative process where each new tree is added to the model to reduce the error caused by the 
previous trees. It uses gradient descent to find the optimal model parameters. The gradients 
of the objective function with respect to the model parameters are computed and used to 
update the model parameters in the direction of steepest descent.

The main training steps of the XGBoost model are described in the Supplement. The 
family of parameters for subsampling the columns was 0.9, the learning rate was 0.1, the 
maximum depth of the tree was 4, the L1 regularization was 5, and the number of trees was 
600. In our study, the following parameters were used to set up, calibrate and evaluate the 
XGBoost model: input: Q, P and T; output: SSC; objective error function: mean square error 
(MSE).
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3 Results and Discussion

3.1 Comparison of the Sediment Rating Curve and XGBoost Model

In the first step of the study (Figure S1), the sediment rating curve (a = 0.01, b=−0.022, 
c = 11.68) and XGBoost models were set up and calibrated based on the historical data from 
2016 to 2020 and evaluated for 2021. The evaluation of both models is shown in Table 1 
and Figure S2. Moriasi et al. (2015) presented guidelines for the assessment of sediment, 
runoff and nutrient models in catchments on temporal scales (annual, monthly, and daily). 
Unfortunately, no recommendation is given for the daily time scale for sediment transport. 
If the criteria for monthly time steps are used, the performance of the XGBoost model 
(Table 1) can be considered satisfactory in the cases of NSE and PBIAS and good in the 
case of R2. However, the evaluation of the sediment rating curve model can be considered 
unsatisfactory based on NSE and PBIAS and satisfactory according to R2. Notably, the 
criteria for the daily time step are generally lower than those for the monthly time step 
(Moriasi et al. 2015). Some studies have reported better performance in the prediction of 
the suspended sediment load (Gholami et al. 2023; Afan et al. 2024). However, it should be 
noted that the performance of the model strongly depends on the input data and catchment 
characteristics (Bezak et al. 2017). There are several reasons for the slightly lower perfor-
mance of the selected models (Efthimiou 2024): (i) sediment transport processes can vary 
over time due to seasonal changes (e.g., influence of vegetation) or extreme weather events 
(e.g., local flash floods in sub-catchments) with intensive sediment transport on a subdaily 
time step, ii) there is potential for human activities (e.g., water works in the riverbed) during 
low-flow conditions, iii) there is potential uncertainty in the relationship between turbidity 
and suspended sediment concentration (Jastram et al. 2010), and iv) specific impacts such 
as the first flush (Russo et al. 2023) are relatively difficult to include in the model. Notably, 
the Sora River is a typical torrential river, and many factors significantly affect erosion pro-
cesses, landslide occurrence, sediment connectivity and deposition and sediment transport 
within the river network (Nourani et al. 2012; Bezak et al. 2017). Therefore, due to complex 
interplay between the rainfall runoff and sediment transport processes, there is relatively 
weak relationship between discharge and the suspended sediment concentration (R2 = 0.44) 
and between precipitation and the suspended sediment concentration (R2 = 0.47) for the his-
torical data (i.e., 2016–2021) (Figure S3). Specifically, a suspended sediment concentration 
of 100 mg/L can be associated with a discharge of almost 150 m3/s or with low-flow condi-
tions. Therefore, we argue that the XGBoost model can satisfactorily describe the dynamics 
of the suspended sediment load in the Sora River catchment and that it can be used to predict 
suspended sediment concentrations under climate change scenarios (Figure S1).

Metrics Sediment rating curve XGBoost model
R2 0.54 0.71
PBIAS [%] 27.7 −15.2
NSE 0.42 0.58
RMSE [mg/l] 19.3 16.4

Table 1 Evaluation of the per-
formance of the sediment rating 
curve and XGBoost models for 
predicting suspended sediment 
concentrations in 2021
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3.2 Hydrological Modelling

To estimate future suspended sediment concentrations, we also need simulated discharge 
data (Figure S1). Therefore, the methodology described in Sect. 2.3 was applied to simulate 
the daily discharge data for the period of 1981–2100 based on P and T (Figure S1) from the 
selected RCP scenarios (Table S2). Figure S4 shows the performance of the rainfall–runoff 
model for 2017–2021. The NSE, R2, PBIAS, and RMSE values calculated between the 
simulated and observed data were 0.87, 0.93, 1.4% and 1.3 mm, respectively. According 
to the performance evaluation indicators for daily flow values proposed by Moriasi et al. 
(2015), this can be considered very good model performance. As shown in Figure S4, the 
performance of the CemaNeige GR6J model is somewhat worse during low-flow periods. 
However, from the suspended sediment transport point of view, this does not have a sig-
nificant effect on the suspended sediment concentration, as most of the sediment transport 
takes place during high-flow periods. Therefore, the calibrated CemaNeige GR6J model 
was used to simulate the daily discharge values for 1981–2100 (Figure S5). The simulation 
results differ relatively strongly depending on the model selected (Figure S5 and Table S2). 
This is related to the input data for the rainfall–runoff model (Figure S6 and Figure S7). The 
discharge is expected to increase in both the near-future and far-future periods. The relative 
changes compared with the historical period are approximately 4–6% for both RCP4.5 and 
RCP8.5 (Figure S8). Similar increases were also detected for the 75% percentile discharge 
values, whereas a decrease in the range up to − 5% was detected for the 25% percentile 
discharge values, which could be related to more severe low-flow conditions in the future 
(Sapač et al. 2019).

3.3 Sediment Transport Predictions Using Machine Learning

The simulated discharge values presented in the previous chapter were used as the input data 
to simulate the SSC values. To synthesize a large amount of data, we calculated statistical 
values for each of the models for the individual time periods considered. For the RCP4.5 
and RCP8.5 scenarios, we provide the medians of these values, whereas for the RCP2.6 
scenario, we present the results of each model (Fig. 2), as the difference in the results is 
quite large. To compare the results of the different scenarios, we also present them as per-
centage increases or decreases compared with the 1981–2020 reference period. As shown 
in Fig. 2 (left), in both future periods (with suffixes 1 and 2 on the x-axis) and according to 
RCP4.5, RCP8.5 and the second model of RCP2.6, SSC values are generally expected to 
increase. Similarly, but to an even greater extent, an increase in the suspended solids load 
(SSL) is predicted because the sediment load is a product of the sediment concentration and 
discharge data (Fig. 2).

The average values of SSC in the near-future and far-future periods will increase by 7% 
and 12% according to RCP4.5, respectively, and by 12% and 18% according to RCP8.5, 
respectively. As mentioned, the two RCP2.6 models are not consistent in terms of the pre-
dictions; the first model shows a decrease in SSC of 4.1% from 2021 to 2060 and an increase 
of 4% from 2061 to 2100. The second RCP2.6 model shows increases of approximately 
23% in both future periods. The RCP2.6_2 model, however, shows an even twofold rela-
tive increase in average SSL values compared with those of SSC (Fig. 2). Interestingly, less 
optimistic scenarios, i.e., RCP4.5 and RCP8.5, suggest that the average values of SSL will 
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be higher, at 14–37%, with a greater increase in the far-future period. General increases in 
the SSC and SSL values in the future are also confirmed by analysis of the data distribution 
and spread. All three quartile values (1st quartile, median, and 3rd quartile) will be higher 
in both future periods than in 1981–2020 for all scenarios; again, the exception is model 
RCP2.6_1, which shows slight decreases. Higher quartile values indicate general increases 
in sediment concentrations and load compared with those in the reference period. Moreover, 
detailed insight into SSL values based on time exceedance (Fig. 3) reveals that sediment 
transport will increase mainly due to extreme events. More specifically, in the time exceed-
ance range of 0–25% (25% in Fig. 3), average increases of 21% and 36% can be expected 
in the 2021–2060 and 2061–2100 periods, respectively, regardless of the model and climate 
scenario. In other words, at 25% of the most extreme discharge values, for 160*103 t and 
250*103 t, more sediment load is expected to be transported during the near-future and far-
future periods, respectively. Additionally, other changes have indicated possible alterations 
in water quality parameters in the future (van Vliet et al. 2023).

The suspended sediment concentration can also be an important indicator of water quality 
and ecological status of surface waters. According to Alabaster (1982), for inland fisheries, 
there is no evidence that concentrations of suspended solids up to 25 mg/L have any harmful 
effect on fish. This concentration is also considered in Slovenian national legislation (Decree 
on the quality required of surface waters supporting freshwater fish life (Uradni list RS, št. 
46/02, 41/04 – ZVO-1 in 44/22 – ZVO-2). The results of the frequency of exceeding this 
threshold concentration are shown in Fig. 4. More specifically, the relative change in the fre-
quency of exceeding this threshold is estimated. In the reference period, this concentration 
would be exceeded 16% of the time based on the 14 models used. For the near-future period 
(2021–2060), only three models, one for each RCP scenario (1, 3, and 13), show relative 
decreases in frequency, namely, decreases of 2, 1, and 1%, respectively (Fig. 4). Conversely, 
the other 11 models show increases in frequency of 1–5% (Fig. 4). For the far future period 
(2061–2100), the models are more consistent, suggesting increases in frequency (3 ± 2%). 
Although the suggested increases in the frequency of high suspended concentration events 

Fig. 2 Expected future relative changes in the statistical values (i.e., mean, median, and 1st and 3rd quar-
tiles) of suspended sediment concentrations (SSC) and suspended sediment load (SSL) with respect to 
the reference period from 1981–2020. For the RCP4.5 and RCP8.5 models, the median values are shown, 
whereas for RCP2.6, the results of both models are presented. Suffixes 1 and 2 on the x-axis refer to the 
near-future (2021–2060) (1) and far-future (2061–2100) (2) periods, respectively
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are relatively small, even a small increase in suspended sediment transport dynamics for 
short time periods may cause deterioration of numerous water quality parameters and pres-
ent considerable stress to aquatic organisms. Periodic increases in water turbidity reduce 
the penetration of sunlight, affecting photosynthesis; consequently, reduced light avail-
ability can disrupt whole-stream productivity (Parkhill and Gulliver 2002). Changes in the 
amount of suspended sediment load and nutrient flushing into water bodies can considerably 
affect the water bodies (Fong et al. 2020; Lebar et al. 2023). Moreover, possible intensified 
mobilization of toxic particles adsorbed to sediments can lead to the spread of toxic matter 
(Bednářová et al. 2015; van Vliet et al. 2023) and the reactivation of past environmental bur-
dens (Ponting et al. 2021). Therefore, a possible increase of suspended sediment transport 
can have several negative impacts on the river ecosystem functioning.

Fig. 3 Boxplots of the suspended sediment load (SSL) in tons per day according to the scenarios RCP2.6, 
RCP4.5, and RCP8.5 and for three time periods from 1981–2100. Time exceedance is shown in three in-
tervals, namely, 0–25 (25%), 25–50 (50%), 50–75 (75%), and 75–100 (100%). The outliers are not shown 
in the plot for the sake of better data visibility
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3.4 Study Limitations

This study has several limitations that should be clearly noted. First, the measured sus-
pended sediment concentration is only relatively weakly correlated with the discharge and 
precipitation data, as the Sora River catchment has typical characteristics of torrents, and 
many factors influence these relationships. Therefore, the performance of the XGBoost 
model (and the rating curve) is limited by this weaker dependency. Furthermore, in the 
future, other machine learning models (e.g., random forest, LightGBM) could be tested 
to improve our understanding of the role of factors which control the suspended sediment 
concentrations and further, to predict the future suspended sediment loads under different 
climate change scenarios. Second, climate change predictions also contain certain degrees 
of uncertainty, which are transferred from the precipitation and air temperature data to the 
runoff simulations. Third, sediment transport processes are significantly influenced by the 
intensity of precipitation events. For example, extreme flood events such as those in August 
2023 in Slovenia (Bezak et al. 2023) can lead to very high sediment transport rates, and 
during these types of events, the amount of transported material can be considerably greater 
than the average annual rates.

4 Conclusions

Based on the results presented, the following conclusions can be drawn:

 ● The relationship between discharge and the suspended sediment concentration is rela-
tively weak (i.e., R2 = 0.44), indicating the complexity of erosion–sedimentation pro-
cesses in torrent catchments.

 ● The XGBoost model outperformed the sediment rating curve model, and the XGBoost 
model performance can be classified as satisfactory, with a slight underestimation (i.e., 

Fig. 4 Predicted future relative changes in the frequency of occurrence of suspended sediment concentra-
tions (SSC) greater than 25 mg/L with respect to the reference period of 1981–2020 for the 14 GCM/RCM 
models used in this study (Table S2)
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percent bias of approximately − 15%).
 ● The CemaNeige GR6J rainfall–runoff model can predict daily runoff values relatively 

well (i.e., a percent bias of approximately 1.5%), although there are slight discrepancies 
between the measured and simulated data during low flows.

 ● SSC and SSL are expected to increase in the future for both the RCP4.5 and RCP8.5 
periods, and the increases for some climate models are as high as 20%. The increase in 
the SSL is even greater than the increase in the SSC (i.e., up to 40%).

 ● Our results show that water quality related to the suspended sediment concentration is 
expected to worsen in the future, as the number of days with potentially problematic 
SSC concentrations for water organisms (e.g., exceeding 25 mg/l) is expected to in-
crease in the future, where this increase will be in the range of up to 8%.

 ● These increases can be attributed mainly to changes in the frequency of high-flow 
events. Moreover, 25% of the most extreme discharge values caused sediment trans-
port of approximately 200*103 t. Therefore, more suspended sediment is expected to be 
transported under considered climate change scenarios.

The results of our research contribute to an improved understanding of the complex hydro-
climatic drivers that impact suspended sediment transport and will undoubtedly influence 
ecological status of surface waters and water quality in light of future climate change. The 
results indicate that erosion and sediment management and mitigation measures need to 
be applied in the future to ensure adequate water quality. Multiple green, hybrid and grey 
(Anderson et al. 2022; Nakamura 2022) soil erosion mitigation measures could be applied 
to most critical areas within the catchment to decrease soil erosion.
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