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Abstract 
 

Extreme hydrological events have become more frequent, as evidenced by the European floods 
of July 2021, which affected the southern provinces of the Netherlands. The need for improved discharge 
predictions to be used in operational water management to avoid potential adverse effects of flooding 
has encouraged researchers to employ several ways to improve hydrological model estimates, including 
data assimilation. This thesis explores the data assimilation effects in the discharge predictions of the 
wflow_sbm distributed hydrological model of the Vecht river basin. Additionally, effects on other 
hydrological states and fluxes like subsurface flow, saturated water depth, and soil moisture were 
explored spatially.  

 This work presents a methodology for applying data assimilation in a model where water is 
routed from the surface and subsurface. In contrast, previous studies used a model in which water is 
routed only via surface water. Ensemble Kalman Filter is used to update the model’s discharge 
predictions by assimilating external discharge observations. This methodology also explores how the 
data assimilation effect is influenced by the uncertainty characterization considered in the assimilation 
framework and other factors like the length of the assimilation window and the number of assimilation 
locations. A preliminary study of the rainfall data is performed to determine the uncertainties of the 
chosen rainfall product. A benchmark simulation scenario is then selected after the review of 
deterministic and ensemble model predictions. Finally, data assimilation experiments are developed 
after discussing the characterization of the uncertainty model. 

 The results of the model output analysis indicate that streamflow assimilation typically has a 
positive effect on improving model discharge estimations. Additionally, the Ensemble Kalman Filter 
update effectively captures the system’s spatial state dynamics for subsurface states and fluxes, such as 
saturated water depth, soil moisture, etc. Two alternative experimental setups with different assimilation 
intervals and numbers of assimilated observations are examined concerning how this effect varies over 
other flow gauge locations. As demonstrated by both experiments, longer assimilation times give better 
results, with the assimilation effect significantly improving in the final timesteps of the 
assimilation frame. Furthermore, it is concluded that assimilation of observations near the outlet and 
interior gauges will improve discharge predictions, whereas assimilation of observations only near the 
outlet will only improve discharge predictions at a number of stations, typically those that are closer to 
the assimilation location and those where the wflow sbm model exhibits the same trend as the 
assimilation station. An uncertainty factor of 2.5 for the precipitation error and 0.1 for the observation 
error yielded the best results for both experiments. 

However, this study has several limitations, including assumptions of a perfect model and initial 
conditions; the way the precipitation and observations error model was derived. As a result, the model 
gives unrealistic discharge predictions when compensating for the neglected errors. Additionally, a 
limited number of experiments due to the extensive computational times, attributed to the combination 
of the OpenDA tool with the distributed model, and the algorithm choice, does not allow the DA impact 
on the discharge predictions to be judged accurately.  

 Therefore, the final section of this study provides recommendations for future research, 
suggesting additional experiments with longer assimilation windows; analysis of the spatial correlation 
structure of precipitation, the use of more statistically reliable techniques to assess the precipitation 
uncertainties; consideration of the model parameter and initial conditions uncertainty; etc.   
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Izvleček:  

Ekstremni hidrološki dogodki so postali vse pogostejši, kar dokazujejo evropske poplave julija 
2021, ki so prizadele južne nizozemske province. Potreba po izboljšanih napovedih izpustov, ki se 
uporabljajo pri operativnem upravljanju voda, da bi se izognili morebitnim škodljivim učinkom poplav, 
je spodbudila raziskovalce k uporabi več načinov za izboljšanje ocen hidroloških modelov, vključno z 
asimilacijo podatkov. Diplomsko delo raziskuje učinke asimilacije podatkov pri napovedih pretoka 
porazdeljenega hidrološkega modela wflow_sbm porečja reke Vecht. Poleg tega so bili prostorsko 
raziskani učinki na druga hidrološka stanja in tokove, kot so podzemni tok, globina nasičene vode in 
vlažnost tal. 

 To delo predstavlja metodologijo za uporabo asimilacije podatkov v modelu, kjer je voda 
usmerjena s površine in pod površino. V nasprotju s tem so prejšnje študije uporabile model, v katerem 
je voda speljana le po površinski vodi. Ensemble Kalmanov filter se uporablja za posodobitev napovedi 
izpustov modela z asimilacijo zunanjih opazovanj izpustov. Ta metodologija raziskuje tudi, kako na 
učinek asimilacije podatkov vpliva karakterizacija negotovosti, upoštevana v asimilacijskem okviru, in 
drugi dejavniki, kot sta dolžina asimilacijskega okna in število asimilacijskih lokacij. Izvede se 
predhodna študija podatkov o padavinah, da se določijo negotovosti izbranega produkta padavin. Po 
pregledu napovedi determinističnih in ansambelskih modelov se nato izbere primerjalni simulacijski 
scenarij. Po razpravi o karakterizaciji modela negotovosti so razviti poskusi asimilacije podatkov. 

 Rezultati analize rezultatov modela kažejo, da ima asimilacija toka običajno pozitiven 
učinek na izboljšanje ocen pretoka modela. Poleg tega posodobitev filtra Ensemble Kalman 
učinkovito zajame dinamiko prostorskega stanja sistema za stanja in tokove pod površino, kot 
so globina nasičene vode, vlažnost tal itd. Dve alternativni eksperimentalni nastavitvi z 
različnimi intervali asimilacije in številom asimiliranih opazovanj sta preučeni glede tega, kako 
ta učinek razlikuje glede na druge lokacije merilnika pretoka. Kot sta dokazala oba poskusa, dajejo daljši 
časi asimilacije boljše rezultate, pri čemer se učinek asimilacije znatno izboljša v končnih časovnih 
korakih okvira asimilacije. Poleg tega je ugotovljeno, da bo asimilacija opazovanj v bližini izpusta in 
notranjih merilnikov izboljšala napovedi pretoka, medtem ko bo asimilacija opazovanj samo v bližini 
iztoka izboljšala le napovedi pretoka na številnih postajah, običajno tistih, ki so bližje lokaciji 
asimilacije, in tistih kjer model wflow sbm kaže enak trend kot asimilacijska postaja. Faktor negotovosti 
2,5 za napako padavin in 0,1 za napako opazovanja je dal najboljše rezultate za oba poskusa. 

Vendar ima ta študija več omejitev, vključno s predpostavkami o popolnem modelu in začetnih 
pogojih; način, kako je bil izpeljan model napak padavin in opazovanj. Posledično daje model nerealne 
napovedi praznjenja pri kompenzaciji zanemarjenih napak. Poleg tega omejeno število poskusov zaradi 
obsežnih računskih časov, pripisanih kombinaciji orodja OpenDA s porazdeljenim modelom, in izbire 
algoritma ne omogoča natančne ocene vpliva DA na napovedi praznjenja. 

 Zato zadnji del te študije podaja priporočila za prihodnje raziskave in predlaga dodatne poskuse 
z daljšimi asimilacijskimi okni; analiza prostorske korelacijske strukture padavin, uporaba statistično 
zanesljivejših tehnik za ocenjevanje padavinske negotovosti; upoštevanje negotovosti parametrov 
modela in začetnih pogojev; itd. 
 
 



Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river.  V 
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 
 

 

TABLE OF CONTENTS 

ERRATA ................................................................................................................................................. I 

ACKNOWLEDGMENTS ................................................................................................................... II 

BIBLIOGRAPHIC-DOCUMENTALISTIC INFORMATION AND ABSTRACT ..................... III 

TABLE OF CONTENTS ...................................................................................................................... V 

LIST OF FIGURES .......................................................................................................................... VII 

LIST OF TABLES ................................................................................................................................ X 

ABBREVIATIONS AND SYMBOLS ............................................................................................... XI 

1 INTRODUCTION ........................................................................................................................ 1 

1.1 Motivation ................................................................................................................................. 1 

1.2 Objectives .................................................................................................................................. 2 

1.3 Research questions ................................................................................................................... 2 

1.4 Practical value and innovation ................................................................................................ 2 

1.5 Operational flood forecasting in the Netherlands ................................................................. 3 

2 LITERATURE REVIEW ............................................................................................................ 4 

2.1 Data assimilation concepts and methods ................................................................................ 4 

2.2 Uncertainty definition .............................................................................................................. 6 

2.3 Verification methods ................................................................................................................ 8 

2.3.1 Performance verification of deterministic forecasts .............................................................. 8 

2.3.2 Performance verification of ensemble forecasts .................................................................... 9 

2.4 OpenDA ................................................................................................................................... 10 

3 CATCHMENT DESCRIPTION ............................................................................................... 12 

3.1 Geul river basin ...................................................................................................................... 12 

3.2 Vecht river basin .................................................................................................................... 13 

4 DATA AND MODEL SETUP ................................................................................................... 15 

4.1 Data availability ..................................................................................................................... 15 

4.1.1 Precipitation ......................................................................................................................... 15 

4.1.2 Additional forcing data ........................................................................................................ 17 

4.1.3 Discharge ............................................................................................................................. 18 

4.2 Wflow_sbm hydrologic model ............................................................................................... 19 

5 RESEARCH METHODOLOGY .............................................................................................. 21 

6 RESULTS AND DISCUSSION ................................................................................................. 23 

6.1 Precipitation data analysis .................................................................................................... 23 

6.2 Deterministic simulations ...................................................................................................... 28 

6.2.1 Model States ........................................................................................................................ 34 

6.3 Experiments with DA ............................................................................................................. 35 

6.3.1 Experimental setup .............................................................................................................. 35 

6.3.2 Selection of a reference simulation. ..................................................................................... 37 

6.3.3 Model performance regarding discharge prediction ............................................................ 38 

6.3.3.1 Experiment 1 ............................................................................................................... 39 



VI Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river. 

  Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 

 

6.3.3.2 Experiment 2 ............................................................................................................... 43 

6.3.4 Model performance regarding state updating ....................................................................... 47 

7 CONCLUSIONS AND RECOMMENDATIONS .................................................................... 51 

7.1 Summary ................................................................................................................................. 51 

7.2 Limitations .............................................................................................................................. 52 

7.3 Conclusions ............................................................................................................................. 52 

7.4 Recommendations................................................................................................................... 54 

8 REFERENCES ........................................................................................................................... 55 

9 APPENDICES ............................................................................................................................. 58 

Appendix A. Streamflow gauge station locations ............................................................................. 58 

A.1 Vecht .......................................................................................................................................... 58 

A.2 Geul ............................................................................................................................................ 58 

Appendix B. Precipitation data analysis ............................................................................................ 59 

B.1 DWD rain gauge observations VS E-OBS gridded dataset ........................................................ 59 

B.2 Radolan vs EOBS ....................................................................................................................... 61 

Station ID 357 ............................................................................................................................... 61 

Station ID 1223 ............................................................................................................................. 62 

Station ID 1230 ............................................................................................................................. 62 

Station ID 3640 ............................................................................................................................. 63 

Station ID 5131 ............................................................................................................................. 63 

Station ID 4667 ............................................................................................................................. 64 

Station ID 15927 ........................................................................................................................... 64 

B.3 Annual max and mean precipitation ........................................................................................... 65 

Appendix C. Simulations with DA ..................................................................................................... 67 

C.1 Sensitivity analysis of the simulations with DA, for a run with 8 ensemble members, with 
different values of uncertainties for forcing and observations .......................................................... 67 

C.2 Discharge prediction results with DA in different station locations – experiment 1 .................. 70 

River station – Bilk ....................................................................................................................... 70 

River station – Gronau .................................................................................................................. 70 

River station – LageI..................................................................................................................... 70 

River station – Ohne ..................................................................................................................... 71 

River station – Osterwald ............................................................................................................. 71 

River Station – Wehr Neuenhaus .................................................................................................. 71 

C.3 Discharge prediction results with DA in different station locations – experiment 2 .................. 72 

River station – Bilk ....................................................................................................................... 72 

River station – Lage1 .................................................................................................................... 72 

River station – Ohne ..................................................................................................................... 72 

 



Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river.  VII 
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 
 

 

LIST OF FIGURES 

Figure 1: Classic Kalman Filter Algorithm ............................................................................................. 5 

Figure 2: Diagram of the model update differences between the EnKF and the AEnKF (Rakovec et al., 

2015) ....................................................................................................................................................... 6 

Figure 3: Modular components of OpenDA: method (the DA method), observations (the stochastic 

observer for processing the observations), and the model (van Velzen et al., 2016) ............................ 11 

Figure 4: Geul river basin location ........................................................................................................ 13 

Figure 5: Vecht river basin location ...................................................................................................... 14 

Figure 6: Snapshot of the interactive map made available by the rdwd R package, displaying a rain 

gauge station located near the border (catchment area), for which no public data are accessible ........ 16 

Figure 7: a) Schematic illustration of the wflow_sbm processes and states (Schellekens et al., 2020),  

b) model states and fluxes in terms of internal variable names. ............................................................ 20 

Figure 8: Schematization of the research methodology workflow ........................................................ 22 

Figure 9: Comparison of the cumulative and daily rainfall time series between the DWD rain gauge 

observations and the EOBS observational gridded rainfall dataset for Station ID 357 in the Vecht river 

catchment for  a) year 2021; b) the complete time series from 2011 to 2021 ....................................... 23 

Figure 10: Comparison of the cumulative and daily rainfall time series between the DWD rain gauge 

observations and the EOBS observational gridded rainfall dataset for Station ID 15000 in the Geul 

catchment for  a) year 2021; b) the complete time series from 2011 to 2021 ....................................... 24 

Figure 11: EOBS and Radolan precipitation resampled into annual maximum precipitation values for 

the station ID 15000 in the Geul catchment .......................................................................................... 24 

Figure 12: EOBS and Radolan precipitation resampled into annual mean precipitation values for the 

station ID 15000 in the Geul catchment ................................................................................................ 25 

Figure 13: a) Daily precipitation at station point location with ID 5131 in the Vecht river catchment 

derived from the Radolan gridded dataset and the EOBS gridded observational datasets. Uncertainty of 

the Radolan is presented as a 95% uncertainty ban; b) Annual values of selected performance metrics 

(NSE, RMSE, KGE); c) Correlation scatter plots of the Radolan and EOBS daily time series for the 

10-year period. ...................................................................................................................................... 25 

Figure 14: a) Daily precipitation at station point location with ID 15000 in the Geul catchment derived 

from the Radolan gridded dataset and the EOBS gridded observational datasets. Uncertainty of the 

Radolan is presented as a 95% uncertainty band; b) Annual values of selected performance metrics 

(NSE, RMSE, KGE);  c) Correlation scatterplots of the Radolan and EOBS daily time series for the 

10-year period. ...................................................................................................................................... 26 

Figure 15: E-OBS (on the left) vs. RADOLAN (on the right) spatial comparison for the grid covering 

both catchments a) annual mean rainfall b) annual max rainfall c) annual max rainfall resampled 

(11km Radolan grid to match the EOBS grid) ...................................................................................... 27 

file:///C:/Users/KriKo/OneDrive/Desktop/UL_MSc_Thesis_KristinaK.docx%23_Toc112409464


VIII Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river. 

  Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 

 

Figure 16: Hourly Observations of the Emlichheim discharge and wflow_sbm model difference before 

and after correction with ERA5. In red, gaps in the uncorrected model output are highlighted. .......... 29 

Figure 17: Simulated VS Observed Mean daily runoff, for selected stations in the Vecht catchment, for 

2016 ....................................................................................................................................................... 29 

Figure 18: Correlation of simulated and observed discharge scatter plots at selected station location in 

the Vecht catchment. Note that the correlation is computed for a different period in different stations, 

depending on the period of record available at each station .................................................................. 31 

Figure 19: Simulated VS Observed Mean daily runoff, for selected stations in the Geul catchment, for 

the first half of the year 2021................................................................................................................. 32 

Figure 20: Correlation of simulated  and observed discharges scatter plots at selected station location 

in the Geul river catchment. Correlation is computed for a different period in different stations, 

depending on the period of record available at each station .................................................................. 33 

Figure 21: Hydrological model states variation at Emlichheim for a selected year (2016) .................. 34 

Figure 22: Model state correlation at Emlichheim ................................................................................ 35 

Figure 23: Observed discharge in the outlet (Emlichheim) and other interior flow gauges in the Vecht 

river basin during 2016. Two characteristic winter and summer flood events are selected for the 

analysis .................................................................................................................................................. 36 

Figure 24: Open loop simulation results for three different combinations of uncertainties: a) forcing 

standard deviation 2.5, spatial correlation 30 km; b) forcing standard deviation 2, spatial correlation 30 

km; c) forcing standard deviation 2, spatial correlation 10 km ............................................................. 38 

Figure 25: DA simulation results, experiment 1, Emlichheim. The observed discharges are given in the 

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of 

the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a 

95% uncertainty interval, in the sky blue. ............................................................................................. 39 

Figure 26: DA simulation results, experiment 1, Gronau. The observed discharges are given in the 

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of 

the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a 

95% uncertainty interval, in the sky blue. ............................................................................................. 40 

Figure 27: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run 

and the daily observed discharges in selected stations. The red lines in the boxes represent the RMSE 

median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the 

circles show the extreme values of RMSE. ........................................................................................... 41 

Figure 28: Boxplot of RMSE of the mean ensemble for each day between the open loop reference run 

and the daily observed discharges in selected stations. The red lines in the boxes represent the RMSE 

median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the 

circles show the extreme values of RMSE. ........................................................................................... 42 



Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river.  IX 
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 
 

 

Figure 29: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run 

and the open loop reference run in selected stations. The red lines in the boxes represent the RMSE 

median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the 

circles show the extreme values of RMSE. ........................................................................................... 43 

Figure 30: DA simulation results, experiment 2, Emlichheim. The observed discharges are given in the 

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of 

the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a 

95% uncertainty interval, in the sky blue. ............................................................................................. 44 

Figure 31: DA simulation results, experiment 2, Gronau. The observed discharges are given in the 

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of 

the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a 

95% uncertainty interval, in the sky blue. ............................................................................................. 45 

Figure 32: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run 

and the daily observed discharges in selected stations. The green lines in the boxes represent the 

RMSE median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and 

the circles show the extreme values of RMSE. ..................................................................................... 46 

Figure 33: Boxplot of RMSE of the mean ensemble for each day between the open loop reference run 

and the daily observed discharges in selected stations. The green lines in the boxes represent the 

RMSE median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and 

the circles show the extreme values of RMSE. ..................................................................................... 46 

Figure 34: Difference between the predicted (instates) and updated (outstates) model states on three 

selected days (23, 25, 29 June 2016). Only the most sensitive model states are shown, discharge (Q), 

land flow (Qland), subsurface flow (ssf), saturated water depth (swd), and soil moisture in three 

different layers ...................................................................................................................................... 49 

 



X Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river. 

  Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 

 

LIST OF TABLES 

Table 1: General characteristics of the Geul and Vecht river catchments ............................................. 12 

Table 2: Summary of the available gridded precipitation datasets that provide coverage of the study 

areas ....................................................................................................................................................... 16 

Table 3: Rain gauge stations nearby Geul (Source: DWD) ................................................................... 17 

Table 4: Rain gauge stations nearby Vecht (Source: DWD) ................................................................. 17 

Table 5: River gauge stations in the Vecht river ................................................................................... 18 

Table 6: River gauge stations in the Geul .............................................................................................. 19 

Table 7: Performance metrics of the Radolan, EOBS rainfall dataset comparison for the complete daily 

time-series (2011-2021) ......................................................................................................................... 28 

Table 8: Performance statistics to evaluate the model's predictive ability in selected stream gauge 

stations in the Vecht river catchment .................................................................................................... 31 

Table 9: Performance statistics to evaluate the model's predictive ability in selected stream gauge 

stations in the Geul river catchment. ..................................................................................................... 34 

Table 10: An overview of the experiment periods selected for the DA analysis .................................. 37 

Table 11: Error model setup for the DA experiments ........................................................................... 39 

Table 12: An overview of the mean, maximum and minimum flows corresponding to observed, open 

loop, and filtered discharges at Emlichheim ......................................................................................... 40 

Table 13: An overview of the mean, maximum and minimum flows corresponding to observed, ....... 40 

Table 14: The coefficient of determination R2 [%] for seven different stations after DA application .. 42 

Table 15: An overview of the mean, maximum and minimum flows corresponding to observed, ....... 44 

Table 16: An overview of the mean, maximum and minimum flows corresponding to observed, ....... 45 

Table 17: The coefficient of determination R2 [%] for five different stations after DA application ..... 47 

Table 18: Overview of the streamflow gauge station in the Vecht river basin ..................................... 58 

Table 19: Overview of the streamflow gauge station in the Geul river basin ....................................... 58 

 



Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river.  XI 
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 
 

 

ABBREVIATIONS AND SYMBOLS 

AEnKF Asynchronous Ensemble Kalman Filter 
A.s.l. Above sea level 
CDC Climate Data Center 
CDS Climate Data Store 
CRPS  Continuous Rank Probability Score 
DA  
DWD 

Data Assimilation  
German national weather service 

ECMWF European Centre for Medium-Range Weather Forecast 
EKF Extended Kalman Filter 
ELWAS Water Information System of the North Rhine-Westphalia 
EnKF Ensemble Kalman Filter 
E-OBS European daily gridded observational dataset  
FEWS Flood forecasting and Early Warning System 
KF Kalman Filter 
KGE Kling-Gupta Efficiency 
KNMI Royal Netherlands Meteorological Institute 
NLWKN Lower Saxony State Office for Water 

Management, Coastal Protection and Nature Conservation 
NSE Nash-Sutcliffe Efficiency 
MAE Mean Absolute Error 
MSE Mean Squared Error 
OI Optimal Interpolation 
pBIAS  Percentage bias (%) 
PET Potential evapotranspiration 
QPE Quantitative Precipitation Estimate 
RMSE Root Mean Square Error 
RADOLAN Radar-Online-Adjustment 
R2 Coefficient of determination 
SWP Agriculture, Natural Resources and Environment entity of 

the Public Service of Wallonia 
Var Variational 
WL Waterschap Limburg 
3D-Var  3-D variational 
4D-Var  4-D variational 
  
  
   
 
 
 





Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river.  1 
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 

 

1 INTRODUCTION 

Accurate and reliable discharge predictions have proven challenging in operational hydrology. The 
recent floods of July 2021 in Europe, especially in the province of Limburg, highlighted the necessity 
for improved flood forecasting quality and accuracy.  
The primary purpose of data assimilation is to predict a system's correct state. For example, a state of 
interest in operational hydrology can vary from river discharges, which can then be translated into water 
levels, to other fluxes and states such as subsurface water flow, soil moisture, saturated water depth, and 
so on, based on the objective of the study. Given that a hydrological model aims to predict such states 
based on physical and mathematical relationships assigned to each model, one can question why data 
assimilation is used. In fact, models are unable to make realistic state estimates, as they are prone to a 
wide range of errors, which could stem from various sources, including structural errors caused by 
assumptions and approximations made for the physical and numerical relations between system 
components, uncertainties of the model input (e.g., imperfect forcing data), model parameters and so 
on.  
While it is possible to monitor states through ground-based observations or remote sensing, this may 
not be enough to capture all states of our interest. States with a high degree of spatial and temporal 
variability cannot be scaled spatially accurately from point observations, as in the case of precipitation 
upscaling from rain gauge point observations. On the other hand, satellite data can provide global 
coverage. Still, in practice, it is not always the case when the observations provide direct information 
for our state of interest, as with river discharge, where a hydrological model is applied to convert 
precipitation data into flows.  
Data assimilation (from now on, referred to as DA), by observation merging with model predictions, 
can produce state estimates with a good prediction accuracy and uncertainty quantification (Liu and 
Gupta 2007a). The correct initial conditions for a future forecast are obtained by updating the model 
states with external measurements (Rakovec, Weerts, et al., 2012). The uncertainty inherent to the new 
estimates is intended to be lower than that associated with the model forecasts or observations alone.  
Different DA techniques have been developed and are widely used in hydrological forecasting, including 
approaches like interpolation (e.g., optimal interpolation), filtering (e.g., the Classic, Extended, and 
Ensemble Kalman Filter), and smoothing (4DVar, Ensemble Kalman Smoother) algorithms. The 
majority of operational hydrological forecasting systems now use lumped models (with manual or 
deterministic state updates). However, a substantial shift toward distributed models with hydrological 
ensemble predictions is noticed, as they present more flexibility in terms of how uncertainty is accounted 
for (Liu et al., 2012).  

1.1 Motivation 

The main motivation for this research is to see the potential impact and uses of a better forecasting 
model could have. This study will focus on data assimilation (DA) effects on distributed hydrological 
model states and fluxes (e.g., wflow_sbm). The primary advantage of applying data assimilation 
techniques with distributed models lies in the potential of such models to be forced using spatially 
observed data, which are now widely accessible due to remote sensing and radar applications. Moreover, 
distributed model states provide a better representation of the model states, resembling actual 
observations within the catchment (e.g., subsurface water flow, soil moisture, and discharges) more than 
the lumped states over the entire catchment. (Rakovec, Weerts, et al., 2012). A data assimilation 
application technique using spatially distributed models, as recommended by Liu et al. (2012), is tested 
in two selected small-scale experiments, using the Ensemble Kalman Filter for assimilating the 
observations.  
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1.2 Objectives 

This study’s main objective is to use assimilation of the discharge observations with a distributed 
hydrological model (wflow_sbm) to derive better quality forecasting and increased accuracy for a flood-
prone area (River Vecht). It is necessary to complete the following specific objectives to attain the 
overall goal: 

- Assess the effect of streamflow assimilation on discharge prediction quality for the Vecht river. 
- Estimate the effect of applying DA on hydrological model states and fluxes using a model where 

water is routed via surface and subsurface.  
- Examine the influence of uncertainty selection on the discharge prediction quality for the Vecht 

river. 

1.3 Research questions 

The primary research goal of this study is to examine the effects of data assimilation in enhancing 
model flow predictions when used with a distributed model. For this objective to be accomplished, the 
following research questions are identified and addressed in this work: 

- What is the effect of assimilating streamflow observations with the wflow_sbm distributed 
hydrological model on the streamflow predictions for the Vecht river using the EnKF? What is 
the influence of the assimilation window length and the number of assimilation locations? 

- What effect does discharge data assimilation have on other hydrological model states and fluxes, 
given that we use a model in which water is routed laterally via subsurface and surface water, 
whereas previous studies used a model in which water was routed only via surface water? 

- What is the influence of the error model specification of the input forcing and observations on 
the discharge predictions with the wflow_sbm model? 

1.4 Practical value and innovation 

Extensive research on the assimilation of discharge measurements into lumped hydrological 
models has been reported, e.g., Weerts and El Serafy (2006). Additionally, several studies have 
examined DA applications within spatially distributed hydrological models, considering conceptual and 
operational aspects (e.g., Rakovec et al. 2012). This work assesses DA techniques applied to the 
wflow_sbm distributed hydrological model using computationally effective algorithms. However, only 
a few studies utilizing DA with distributed hydrological models have been reported, like the wflow_sbm, 
where the water is laterally routed through subsurface and surface water. In contrast, previous studies 
on DA with distributed models only used models that only routed water through surface water. 

 In light of the floods in Europe in July 2021, improved discharge predictions may facilitate better 
flood forecasting and decision-making. Predictions of discharge may alert water officials to impending 
high water levels, allowing them time to take quick action, monitor the situation, and potentially prevent 
severe consequences. In addition, if the research findings demonstrate that the employment of DA with 
the wflow_sbm model considerably improves the quality and accuracy of discharge prediction, the 
method employed in this study may become a suitable alternative. The model used in this work 
(wflow_sbm), together with the assimilation tool OpenDA is open source, so if no restrictions on the 
data availability are encountered, it can be applied to other river basins. This work is relevant to 
hydrologists, water experts, decision-makers, and other fields related to operational hydrology. 
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1.5 Operational flood forecasting in the Netherlands 

The river Vecht is a completely rain-fed catchment as it depends on precipitation. As it is a 
transboundary river flowing from Germany to the Netherlands, many stakeholders engaged in the water 
management issues of the river, resulting in it lacking an operational forecasting system until 2011, 
when with the help of the Delft-FEWS system, it was finally built. Delf-FEWS is a data model 
integration platform that collects real-time fluvial and meteorological observations. HBV-96, a spatially 
lumped rainfall-runoff model, has been operationally running since 2012 to forecast floods in the Vecht 
river. The system can forecast five days using a 5-day ECMWF ensemble forecast (Heerinen et al., 
2013).  

While the forecasting system has proved successful in multiple small flood occasions, in the 
context of a changing climate and advances in hydrological models and operational hydrology in 
general, it is sensible to develop and evaluate more effective ways of forecasting in the area. The 
operational forecasts generated from the HBV-96 model are employed as lateral inputs into the 1D 
hydrodynamic model (Sobek). The HBV-96 model does not use discharge assimilation for sequential 
model state updating; instead, an automated auto-regressive error correction approach is used to update 
the model with discharge measurements. The application of this automatic error correction is analogous 
to what is described in the work of Broersen and Weerts (2005) for the Rhine catchment. Like the Vecht 
river forecasting system, the operational forecasting for the Geul is derived using a lumped HBV-96 and 
a hydrodynamic 1D Sobek model. As it is a small steep catchment fed from precipitation, with quick 
response and a time skill of just several hours, it is currently aimed by the water authorities to establish 
a nowcasting system to avert future flooding as severe as July 2021.  

The research presented in this thesis explores discharge data assimilation for state updating with 
wflow_sbm that can be used to derive an updated forecasting system for Vecht.  
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2 LITERATURE REVIEW 

This chapter reports the state-of-the-art on data assimilation and various verification methods for 
deterministic and ensemble forecast evaluation. First, a general overview of the theoretical backgrounds 
of data assimilation algorithms, focusing on the Ensemble Kalman Filter (EnKF), is given. Finally, some 
remarks on the OpenDA toolbox and some details on its applications with hydrological models are 
presented. 

2.1 Data assimilation concepts and methods  

Data assimilation is defined as "the process of employing observational data to update a model" 
(WMO, 1992). Data assimilation is often regarded as the way of maintaining a model "on track" by 
continuously adjusting it with new observations (University of Reading, 2022).  
The main ways to update a model are as follows:  

- Input update:  forcing data errors are corrected using observation-based forcing, resulting in 
improved model predictions. 

- State update: model states are corrected to get closer to observational data. 
- Parameter estimate: model parameters are corrected using observations (e.g., calibration).  
- Error correction: model simulations are corrected with a long-term experimental error to 

diminish systemic model bias (e.g., bias correction). 
In hydrology, DA techniques can be sequential or variational. Sequential approaches are typically used 
for state update of a hydrological model by assimilating external observations as they become available 
at each time step. Their impacts reflect the observational data and model states' uncertainties. Variational 
approaches aim to optimize a cost function throughout an experiment's duration. The initial construction 
of a first-guess model is followed by developing an adjoint model that propagates in time and integrates 
model-observation misfit (Rakovec, Weerts, et al., 2012). 

Optimal interpolation (OI), also known as statistical interpolation, is one of the most used 
static approaches in DA, as it is a reasonably simple method. OI is a minimum variance estimator that 
determines the optimal solution based on weighted least squares fit observations and a first-guess 
simulation (Lorenc 1981). However, the term "optimal" is misleading, as it is challenging to specify 
error covariances accurately in practice. 

The 3-D variational (3D-Var) method directly solves the recurrent optimization problem, 
as observations are retrieved at the analysis time, thereby requiring less extensive processing 
capabilities. The background covariance matrix is typically approximated using the same method as OI. 

The 4-D variational (4D-Var) is an upgrade of the 3-D variational (3D-Var) system wherein 
observations are assimilated at the exact time they are measured. Within the assimilation window, this 
assimilation algorithm computes the initial condition in which the prediction most closely reflects the 
observations. Both methods determine the optimal guess at the time of analysis by optimizing a cost 
function, which narrows the distance between measurements and a model’s forecasted track. 
In contrast to OI, variational assimilation approaches (3D-Var, 4D-Var) allow greater flexibility for 
assimilating multiple variables with a nonlinear relationship to the model, accommodate a large number 
of observations, and provide a solution for the entire system without dividing it. In addition, they 
establish the foundation for adopting more complex background-error covariance models (Weaver, 
2003). On the downside, the 4D-Var method assumes a perfect model and assigns equal weight to older 
and more recent observations at the start and end of the assimilation interval.  

The Kalman Filter, developed on Kalman's (1960) work on optimum control of linear systems, 
is a popular sequential algorithm for data assimilation. It is a discrete, recursive algorithm for state 
estimation that optimizes mean squared error. The dynamic update of the predicted (background) error 
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covariance over time defines the Kalman filters from more static algorithms such as OI. The classic 
Kalman filter (KF) employs a standard error propagation theory and a linear tangent model. As 
mentioned in Liu et al. (2012), referring to Liu and Gupta (2007), the generic dynamic state-space update 
can be summarized as below: 

    
 

where 𝑥𝑘 and 𝑥𝑘+1  are the system's true state vectors at the time 𝑡𝑘 and 𝑡𝑘+1 respectively; 𝑀𝑘+1 is a 
nonlinear operator representing the system propagation from time 𝑡𝑘 to 𝑡𝑘+1 responding to the input 
vector of the model 𝑢𝑘+1; 𝜃 consists of a time-invariant model parameter vector that is derived from 
physical concepts or calibration of parameters; 𝑧𝑘+1 is the observation vector referring to model 
properties and states through the use of an observation operator 𝐻𝑘+1; 𝜂𝑘+1 is the term used for the 
model error with mean 𝜂𝑘+1 and a covariance 𝑄𝑘+1; the observation uncertainty is represented as 𝜀𝑘+1 
with a mean 𝜀𝑘+1 and covariance 𝑅𝑘+1.  

The prediction (forecast) and update steps are the two main components of the KF algorithm. 
The algorithm's prediction step uses the initial estimates for the state and the error covariance. The 
results of the prediction step are integrated with measurement data in the update step to create an updated 
state estimate, which is then used to initialize the subsequent prediction, which will then be utilized in 
the following update. Figure 1 presents the equations and steps of the KF algorithm are presented. 

 

 
Figure 1: Classic Kalman Filter Algorithm 
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𝑀 and 𝐻 operators are assumed linear in the Kalman Filter (KF); yet, hydrological systems are 
typically nonlinear, restricting the application of KF. Variations of the KF method to provide 
approximated solutions for non-linear situations like the extended Kalman Filter (EKF), Ensemble 
Kalman Filter (EnKF), etc., have been developed. 

A nonlinear variation of the KF is the Extended Kalman Filter (EKF). However, in the case 
of EKF, local tangent linear formulations of the model and observation operators (M and H) are applied. 
Despite specific successful uses of the EKF, as cited in Liu and Gupta (2007), Evensen (1994) 
considered that the EKF can lead to instability or even divergence since it disregards the model's second 
and higher-order derivatives. 

Evensen (1994) proposed the Ensemble Kalman Filter (EnKF) as a substitute for the EKF and 
has since become the most widespread DA technique in hydrology because of its simple conceptual 
formulation and robustness when used with DA applications (Liu et al., 2012). It is a Bayesian recursive 
estimation approach that uses observations to assess model states' proper probability density function. 
Several state forecast ensembles are employed rather than a single discrete estimate of 
covariances. Adding observation perturbations is critical in EnKF to avoid ensemble members 
collapsing. 

The Asynchronous Ensemble Kalman Filter (AEnKF) is developed from the adaptation of 
the (synchronous) Ensemble Kalman Filter (EnKF) using a data-driven state updating method. The 
AEnKF incorporates all measurements in a single update and uses a longer assimilation window. The 
AEnKF is attractive for operational application since additional measurements can be used with little 
added computation time. Rakovec (2015) examined the benefit of an extended assimilation window in 
his work. 

 

 
Figure 2: Diagram of the model update differences between the EnKF and the AEnKF (Rakovec et al., 

2015) 

2.2 Uncertainty definition 

While there are recommendations and methodologies for characterizing model 
prediction uncertainties in the literature, selecting the optimal model error remains challenging in most 
DA applications. To prevent the filter from failing, arbitrary model uncertainty is typically defined. 
Inconsistent data coverage, observation errors, improper DA structure, and model initialization are 
among the sources of DA uncertainties.  
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The accuracy of error estimates of the model input forcing and flaws in the model structure 
because of parameterization of physical phenomena or unaddressed scaling issues influence 
how efficient the DA approach is (Liu et al., 2012). Furthermore, an assumed perfect model structure 
does not guarantee a perfect prediction, as the model parameter estimates could also be uncertain. As a 
result, the effectiveness of a DA scheme is highly influenced by the quality of the input and model 
uncertainty estimates, the accurate representation of the dependencies between model parameters, etc. 

In hydrology and operational water management, it is essential to quantify precipitation 
accurately in terms of its intensity and location. Given the small temporal and spatial correlation scales, 
precipitation is thought to be the most uncertain input for hydrologic models. Traditionally, spatial 
precipitation data is retrieved from rain gauge recordings based on estimates at the point scale. Yet, the 
application of weather radars at increasing scales over recent times has enhanced the knowledge of 
precipitation patterns. Radar precipitation estimates are prone to error, resulting in the need for 
operational nowcasting/forecasting systems to employ rain gauge data for minimizing errors in radar 
QPEs, e.g., as in the Radolan product (after Kreklow et al. 2019). Considering the strong influence of 
precipitation uncertainties on the model predictions, reliable estimates of these uncertainties are essential 
for optimal DA applications. Recent advancements in radar performance and rainfall uncertainty 
estimation are described by Van de Beek et al. (2010) and other authors.  

Stochastic perturbations are typically employed to quantify precipitation uncertainty in DA 
applications (Weerts & el Serafy, 2006). A stochastic perturbation approach typically determines the 
size of precipitation error noise primarily by considering the precipitation scale. For instance, the 
standard deviation of precipitation errors is considered equal to fifty percent of the rainfall at each model 
time step (e.g., Reichle et al. 2002).  

As precipitation estimates errors present a high spatial and temporal variation, such order-of-
scale-based approaches might lack statistical validity. Therefore, the estimates derived from conditional 
simulation techniques will be more appropriate as they are statistically more reliable. However, 
conditional simulation techniques may necessitate additional data parametrization and be 
computationally inefficient and costly compared to ad hoc stochastic perturbations (Liu et al., 2012). 

Model conceptualizations and mathematical structures are accountable for the model's inherent 
uncertainty. Model error quantification is challenging due to its complex nature, highly dependent on 
the interactions between the model's various sources of uncertainty. As referred in Rakovec (2014), 
according to Liu et al. (2012), the hydrological community has adopted the following four methods to 
measure model error:  

(1) stochastic perturbation of the model states analogous to stochastic perturbation of 
precipitation (e.g., Reichle et al. 2002). 

(2) inverse techniques for deriving probability distribution functions of the model parameters 
(e.g., Vrugt et al., 2003). 
In inverse approaches, model parameters and initial conditions and assumed to be perfect. Thus, 
unrealistic values might be assigned to model variables to compensate for model parameters and initial 
conditions errors. 

(3) synchronous model states and parameters updating and uncertainty quantification in a 
sequential or recursive DA system (e.g., Vrugt et al., 2005). 
The real-time update of model state and parameter values in this method enables the model to correctly 
simulate the system response at each observation time, depending on the applied updating method (e.g., 
linear update in EnKF vs. sequential Bayesian update and resampling in particle filtering). Numerous 
uses of these techniques for river discharge prediction, soil moisture, other state estimation, groundwater 
flow modeling, etc., have been documented.  

(4) multi-model ensembles application (e.g. Georgakakos et al., 2004). 
This stochastic perturbation approach accounts for the model uncertainty term 𝜂𝑘+1 (See equation 1) by 
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adding perturbations to the model physics, alternative methods account for the model uncertainty by 
quantifying model parameter errors.  

2.3 Verification methods 

The hydrological model prediction performance is assessed by different verification methods, most 
commonly using the differences between the predicted and observed variables. A plethora of verification 
methods are available for both deterministic and probabilistic forecasts, including scatter plots, error 
measures, and skill scores. Some popular verification methods for evaluating DA effectiveness are 
summarized in this section. While deterministic verification methods (e.g., RMSE, ME, etc.) evaluate 
an ensemble's mean using a single observation, probabilistic methods (e.g., CRPSS) evaluate the entire 
ensemble using a single observation. In this work, deterministic and probabilistic simulations are used. 
However, deterministic verification methods are used to evaluate the model predictions in each case (for 
the probabilistic simulations, the ensemble mean is used).  

2.3.1 Performance verification of deterministic forecasts 

For performance evaluation of deterministic predictions, metrics like the Root Mean Square 
Error (RMSE), Percent Bias (pBIAS), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE), 
etc. are commonly used.  

The Root Mean Square Error (RMSE) is an accuracy metric used to evaluate a model's 
performance compared to observed values. It is calculated using equation (3) as below:    

                                                𝑅𝑀𝑆𝐸 =  √
1

𝑛
∑ (𝑌𝑖

𝑠 − 𝑌𝑖
𝑜)

2𝑛
𝑖=1                            (3) 

 
RMSE is a commonly used indicator that provides an idea about the error distribution and determines 
whether the model is over or under-predicting. It certainly has several drawbacks, like being scale-
dependent; hence it should only be used to evaluate methods within the same dataset and not between 
scales (Hyndman & Koehler, 2006). As it allocates higher weights to errors of higher values, it is also 
more sensitive to outliers. RMSE ranges from zero to infinite, with 0 being the ideal value, and it 
employs the same units as the compared variables. 

The Percent Bias (P bias) is a mathematical relationship between the mean error and the 
average observed value. It indicates whether the simulated values are more or less likely to be greater 
or smaller than the observation values. The Pbias is computed using the following equation:  
 

                                   𝑝𝐵𝐼𝐴𝑆 =  [
∑ (𝑌𝑖

𝑜−𝑌𝑖
𝑠)𝑛

𝑖=1 ∗100

∑ 𝑌𝑖
𝑜𝑛

𝑖=1
]      (4) 

 
P bias has a range of infinite negative to infinite positive values, with P bias = 0 being the optimal value. 
A positive P bias value suggests the observed values being overestimated compared to the simulated 
values, whereas a negative P bias value indicates underestimation.  

Nash-Sutcliffe Efficiency (NSE) is a metric typically used to assess hydrological models' 
predictive quality. It indicates how well predictions compare to the mean of the data and is computed 
using the formula as follows: 

     𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜−𝑌𝑖
𝑠)

2𝑛
𝑖=1

∑ (𝑌𝑖
𝑜−𝑌𝑖

𝑚𝑒𝑎𝑛)
2𝑛

𝑖=1

]                                                            (5)       
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This dimensionless indicator ranges from 1 to infinite negative values, with NSE = 1 being the ideal 
value and NSE = 0 indicating that the model's performance is the same as if the observed mean values 
were used as the predictive model. 
In equations (3), (4), and (5), 𝑌𝑖

𝑜 are the observed values, 𝑌𝑖
𝑠 the simulated values, while 𝑛 refers to the 

number of observations.  
Kling Gupta Efficiency (KGE) is an improved variant of the NSE that considers several types 

of model errors like correlation, bias, and variability. It is typically employed for hydrological model 
calibration and evaluation. See Gupta et al. (2009) for a thorough description of KGE and its advantages 
over NSE. There are three main components included in the computation of the KGE index, as shown 
in the equation below:  

        𝐾𝐺𝐸 = 1 − √(𝐶𝑐 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2   
     (6)       

𝐶𝑐  =  
𝐶𝑜𝑣𝑌𝑠𝑌𝑜

𝜎𝑌𝑠𝜎𝑌𝑜
;  𝛼 =  

𝜎𝑌𝑠

𝜎𝑌𝑜
;  𝛽 =  

µ𝑌𝑠

µ𝑌𝑜
 

 
where 𝐶𝑐 is the Pearson correlation coefficient, with an ideal value of 𝐶𝑐=1, computed as the ratio of  
covariance between simulated and observed values 𝐶𝑜𝑣𝑌𝑠𝑌𝑜  with the respective standard deviation of 
the simulation 𝜎𝑌𝑠 and observation 𝜎𝑌𝑜  values; 𝛼  is the ratio between the standard deviation of the 
simulated values 𝜎𝑌𝑠 and the standard deviation of the observed ones 𝜎𝑌𝑜 , with the ideal value being 𝛼 
=1; and 𝛽 represents the ratio between the mean of the simulated values µ𝑌𝑠  and the mean of the 
observed ones µ𝑌𝑜 ideally with a value of 𝛽 =1. The optimal KGE indicator will have a value of 1 for 
the three components, varying from one to negative infinite.  

Nash and Sutcliffe's coefficient of determination R2 (1970) can be used to assess how a DA 
technique improves a hydrological prediction. While it is identical to the NSE, their key distinction lies 
in their application, as R2 is particularly favorable when applied to the ensemble mean. R2 is a metric 
of a statistical model’s goodness of fit and is computed as follows:   

                  

  𝑅2  = (1 −
𝑀𝑆𝐸𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛

𝑀𝑆𝐸𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐
) × 100         (7) 

 
where the Mean Square Error (MSE) is computed as: 

          

 𝑀𝑆𝐸 =  
1

𝑛
∑ (𝑌𝑖

𝑜 − 𝑌𝑖
𝑠)2𝑛

𝑖=1          (8) 

 
Where 𝑀𝑆𝐸𝑎𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑡𝑖𝑜𝑛 denotes the mean square error between the ensemble mean and the respective 
observations after updating with DA, and 𝑀𝑆𝐸𝑑𝑒𝑡𝑒𝑟𝑚𝑖𝑛𝑖𝑠𝑡𝑖𝑐 is the mean square error between the 
deterministic simulation (without DA) and the observations. Positive r2 values imply that the data 
assimilation is beneficial for forecasting, whereas negative r2 values suggest a negative effect.  

2.3.2 Performance verification of ensemble forecasts 

The Continuous Rank Probability Score (CRPS) (Brown, 1974; Hersbach, 2000) is a widely used 
accuracy statistic for ensemble forecasts. Unlike other scores, it compares the cumulative distribution 
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functions of ensembles and observations. It is defined by the integration of the squared differences 
between the cumulative density probability functions (cdfs) of the forecasted and observed as follows: 
  

        𝐶𝑅𝑃𝑆 =
1

𝑛
∑ ∫ (𝑃𝑖

𝑓𝑐(𝑥) − 𝑃𝑖
𝑜(𝑥))2𝑑𝑥

∞

−∞
𝑛
𝑖=1                 (9) 

 
where 𝑃𝑖

𝑓𝑐(𝑥) and 𝑃𝑖
𝑜(𝑥) are the i-th ensemble member probability cdf, and the observation’s cdf, 

respectively. As the observation is a single value, the forecast probability of observations is expressed 
as a step function ranging from 0 to 1. The unit dimensions of CRPS are the same as the observations. 
The optimal value of CRPS is zero when the ensemble’s cdf equals the observation’s cdf.  

Skill scores are a common way of evaluating a forecast. A skill score determines the accuracy 
of the forecast by measuring its relative distance to a reference forecast. The following is the general 
equation used to calculate forecasting abilities: 
     

     𝑆𝑘𝑖𝑙𝑙 =  
𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓−𝑆𝑐𝑜𝑟𝑒𝑓

𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓
        (10) 

 

          𝐶𝑅𝑃𝑆𝑆 =  
𝐶𝑅𝑃𝑆𝑟𝑒𝑓−𝐶𝑅𝑃𝑆𝑓

𝐶𝑅𝑃𝑆𝑟𝑒𝑓
                                            (11) 

 

               𝑅𝑀𝑆𝐸𝑆 =  
𝑅𝑀𝑆𝐸𝑟𝑒𝑓−𝑅𝑀𝑆𝐸𝑓

𝑅𝑀𝑆𝐸𝑟𝑒𝑓
       (12) 

 
where 𝑆𝑐𝑜𝑟𝑒𝑓 represents the quality of the ensemble forecasts (calculated using one of the statistics, 
e.g., RMSE, CRPS) and 𝑆𝑐𝑜𝑟𝑒𝑟𝑒𝑓 is the verification score of the reference forecast. A perfect score is 
the value of 1 and no skill for the value of 0.  

2.4 OpenDA  

OpenDA is an open-source generic toolbox used in data assimilation applications, which includes a set 
of configuration files that define interactions between models, data assimilation algorithms, and 
observations (OpenDA, 2013). Its modular design supports flexible applications for geophysical process 
modeling. For example, in hydrology, DA methods can enhance real-time forecasts, calibrate uncertain 
model parameters, perform uncertainty analysis, and so on. 

The three major building blocks of OpenDA are presented in Figure 3, where the method 
describes the DA (or calibration) algorithm, e.g., 3DVar, EnKF, AEnKF algorithms, etc.; the 
observations include the stochastic observer for handling the observations, and lastly, the DA algorithm 
is applied to the model, which in this case is the wflow_sbm model. Still, it can be any external model 
compatible to the OpenDA (van Velzen et al., 2016). 
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Figure 3: Modular components of OpenDA: method (the DA method), observations (the stochastic 

observer for processing the observations), and the model (van Velzen et al., 2016) 
 
The model delivers a deterministic run to OpenDA, which can integrate the deterministic model run 
with the observations in the chosen algorithm to generate the desired output.  
OpenDA brings several advantages, including a clear modular framework in which the model, 
observations, and algorithm are distinct and can be easily configured using an XML schema, from which 
the user can control the type of algorithm to be used and its settings, like the number of ensemble 
members; the observations to be assimilated and their relative grid placement inside the model,  as well 
as the error associated with the forcing input, the measurements, and the model itself.  
Another benefit is OpenDA’s versatility in formats that the observations can be stored (NetCDF, CSV, 

NOOS, SQL database), and the outputs can be produced (NetCDF, ASCII, Matlab, Python, etc.). A 
significant downside of OpenDA is its lengthy computing times, the simulation's tendency to fail when 
longer assimilation windows are employed, and, in my personal experience, the inability to store results 
when the simulation is run over multiple dates (e.g., simulation starts on 25th of July and ends 26th of 
July). Using the so-called black box coupling and a model wrapper, OpenDA and the model can be 
incorporated as a module in the Delft-FEWS. 
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3 CATCHMENT DESCRIPTION 

Experiments will be conducted for the Geul river catchment (Figure 4), which drains an area of 
approximately 340 km2 and is located partially in Belgium, the Netherlands, and Germany (52 percent, 
42 percent, and 6 percent, respectively), as well as the Overijsselse Vecht river catchment (Figure 5), 
which drains a significantly larger area of approximately 1,800 km2. Significant elevation changes in 
the Geul, a rather steep, primarily rain-fed catchment, result in rapidly changing discharges, whereas the 
Vecht catchment has a slower reaction due to a distinct soil formation and primarily to more minor 
elevation differences.  

 
Table 1: General characteristics of the Geul and Vecht river catchments 

 Geul  Vecht1 
(Latitude, longitude) (50 80 N, 05 91 E) (52 17 N, 07 14 E) 
Upstream area [km2] 344 1980 
Annual precipitation [mm]:  800 730 
Predominant land use agricultural area grassland 
Predominant soil type coarse-silty loamy sand 
Altitude  379–564 m a.s.l. -3–167 m a.s.l. 

3.1 Geul river basin 

A tributary of the River Meuse, the Geul river is located in South Limburg, the most southern 
region of the Netherlands (Figure 4). Originating in the Lichtenbusch region, in northeastern Belgium, 
near the German border, south of Aachen, it enters the Netherlands at Cotessen in the Vaals 
municipality. It has a total length of fifty-six kilometers and a catchment area of 380 square kilometers. 
It is among the few hilly rivers in the region and has a very steep gradient, with the catchment's altitude 
decreasing from 400 m a.s.l at the source area to 50 m a.s.l where it joins the Meuse River, north of the 
city of Maastricht.  

The gradient range drops from 0.02 m/m close to the source to 0.0015 m/m at the outflow (de 
Moor et al., 2008). Gulp, Eyserbeek and Selzerbeek are the three tributaries of the Geul. According to 
the Koppen climate classification system, the climate can be described as Cfb, which indicates a 
continental climate with warm summers but no dry spells. An average discharge of 4 m3/s characterizes 
it, varying from 0.8 to 65 m3/s respectively during summer and winter storms, and an annual average 
rainfall of 800 mm, ranging from 45 mm to 75 mm respectively in March and August (Dautrebande et 
al., 2000). During the past 50 years, the population more than doubled, urbanization was rapid, the river 
was straightened, riverbanks were protected to prevent erosion, land use was changed, and heavy 
agricultural machinery was introduced. All these aspects may have contributed to a change in the 
hydrological regime of the catchment, resulting in higher peak flows.  

To reduce peak discharges, measures like “making room for the river” to meander, construction 
of water retention basins, repurposing areas that would be flooded during flood events into nature 
reserves, etc., were implemented after a severe flood event in the Meuse, at the turn of the twentieth 
century. Today, the river is partially confined (a few short stretches that flow through villages) and 
partially meandering (van den Munckhof, 2020). The Geul river basin is fed by surface, subsoil, and 
groundwater flow together. The river's baseflow is controlled by springs formed from groundwater 
recharge by rainfall traveling laterally through impervious layers to the surface, making Geul a mainly 

 
1 The statistics refer to the Dutch part of the Vecht river  
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rain-fed river, where the discharges can change rapidly. Recurring local floods happen with peak 
discharges as low as forty m3/s; however, the damage is limited to a few submerged meadows along the 
river.  

Typically, rainfall intensity is low, although this is changing due to climate and land use changes. 
Summer rainfall is becoming more intense and concentrated, and torrential rainfall can cause overland 
flow on loess-covered slopes and a quick increase in river discharge, as was witnessed in July 2021, 
when the river flooded, causing extensive damage. 

 
Figure 4: Geul river basin location 

3.2 Vecht river basin 

The Overijsselse Vecht, a tributary of the Rhine, is a low-energy, sand-bed river that flows 
partially through the Netherlands and partly through Germany (Figure 5). Originating in the German 
state of Nordrhein-Westfalen flows through the state of Niedersachsen and, after approximately one 
hundred kilometers, crosses the Dutch-German border, where it flows through the Dutch provinces of 
Overijssel and Drenthe before discharging into the Zwarte Water Lake, flowing into lake Ijssel, located 
in the central-north Netherlands. It has a total length of 182 kilometers, of which sixty kilometers are 
located in the Netherlands, and a total catchment area of 3,780 kilometers squared, of which 1980 
squared kilometers are located in the Netherlands (Bijlsma & Blind, 2006).  

The elevation difference ranges from more than 100 m over the entire course to only 10 m for 
most Dutch parts. It is a rain-fed river system with a mean annual flow of around 22.8 m3/s and a mean 
annual flood peak of 160 m3/s measured at Mariënberg gauge station from 1995 to 2015. The catchment 
average annual precipitation in the Overijsselse Vecht varies from 700 to 825 mm, with average 
evapotranspiration of 525 mm. The mean annual temperature is nine °C, ranging from –22 to 35 degrees 
Celsius (KNMI). The catchment's outlet near Emlichheim, near the border with Germany, is of particular 
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interest as it represents the upstream hydrological and flood risk boundary condition for flood risk 
assessment on the Dutch side. The Overijsselse Vecht valley geomorphology was shaped by 
fluvioperiglacial sands that were locally topped by aeolian cover sands (Huisink 2000). Aeolian drift 
sands accumulated near the Overijsselse Vecht from the overexploitation of agriculture during the Late 
Holocene (Jan Pierik et al., 2018). The Vecht was a meandering river until 1896 when sections of the 
river were diverted and weirs were constructed. The river was channelized with five weirs managing the 
water levels after 1914. As part of river restoration efforts aimed at restoring the river's original physical 
and ecological qualities, meandering side channels that bypass the weirs were recently constructed.  
 

 
Figure 5: Vecht river basin location 
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4 DATA AND MODEL SETUP 

4.1 Data availability 

This section summarizes the available datasets for several meteorological variables, focusing on 
precipitation, and discharge data. Depending on the dataset type and provider, the spatial and temporal 
resolution of available rainfall, temperature, and potential evapotranspiration data varies. Before the data 
can be used to force the models, it is resampled to match its temporal and spatial resolution.  

4.1.1 Precipitation 

The precipitation product can be obtained from various sources, including the Royal Netherlands 
Meteorological Institute (KNMI), the Dutch national weather service; the Climate Data Center (CDC) 
of the German national weather service (DWD); the Climate Data Store (CDS) of the Copernicus 
Climate Change Service and other global datasets. 

The KNMI dataset, also known as Rd1 version 5, is a collection of files containing gridded daily 
precipitation sums measured at approximately three hundred stations in the Netherlands from 8 a.m. to 
8 a.m. the following day. The spatial resolution is 1 km, with a daily temporal resolution of 1 week from 
1950-01-01 to the present, with an average delay of 4 weeks.  

EOBS is an observation-based European daily gridded dataset for precipitation provided by the 
Copernicus Climate Change Services. The EOBS dataset is available in grids with spatial resolutions of 
0.1° and 0.25° and daily resolution. It covers only land precipitation in Europe (including Iceland, as 
well as parts of Northern Africa, the Middle East, and Russia). ERA5 is the latest reanalysis dataset 
available at a spatial resolution of 0.25°, made available by the European Centre for Medium-Range 
Weather Forecasts (ECMWF).  

There are uncertainties associated with ERA5 and the EOBS datasets stemming from 
measurements, spatial interpolation of the observations, and the model itself (reanalysis). REGNIE is a 
grided dataset with a 1-kilometer spatial scale and daily temporal resolution, provided by DWD Climate 
Data Center CDC. The grids are derived from station measurements with the method REGNIE (DWD, 
2017).  

In addition, RADKLIM high-resolution radar-derived precipitation data can be employed. The 
data are from the DWD radar-based precipitation climatology based on the RADOLAN technique 
reprocessing version 2017.002.  The precipitation sums (RW) are calculated using radar-based 
precipitation estimation and corrected using gauge precipitation data. The YW products are quasi-gauge-
adjusted five-minute precipitation rates using RW. The data is accessible in a 1 km x 1 km grid and 
spans the years 2001 to 2017, with extensions until 2021 (DWD, 2022). 

The main properties of the available and accessible datasets are listed in the table below. Whether 
the dataset derived from the actual observations (E-OBS) or the radar estimate is more appropriate to 
use will be evaluated by a short precipitation data analysis in a subsequent stage of this study.  
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Table 2: Summary of the available gridded precipitation datasets that provide coverage of the study 
areas 

Source Name Domain Period of 
record 

Available 
timestep(s) 

Available 
resolution 

Available 
format(s) 

Snapshot 

 
 
KNMI 

 
nl_rdr_
data_rtc
or_5m 

 
 
Netherlands 

 
01.01.1951 
to 
14.02.2022 

 
 
5 min 

 
 
1 km x 1 km 

  
 
HDF5 

 

 

 
Deutscher 
Wetterdien
st DWD 

 
REGNIE 

 
 
Germany 

01.01.1931 
to present 

 
Daily 

 
 
1 km x 1 km 

 
ASCII 

 
 
 
 
 

 

 
RADKLIM 

01.01.2001 
to 
01/01/2021 

Hourly/ 
5 min 

Binary/ 
ASCII 

 
CDS, 
Copernicus 
Climate 
Change 
Service, 
ECMWF 

 
 
E-OBS 

 
 
 
 
Europe 
 
 
 

 
01.01.1950 
to 
30.06.2021 

 
 
Daily 

 
 
0.1° x 0.1°  
 

 
 
NetCD
F 

 
 
 
 

 
 
 
ERA5 

 
01.01.1979 
to present 

Hourly 
down 
to 
yearly 

 
 
0.25° x 0.25° 

 
NetCD
F/ csv 

 
 
 
 

 
 

As both river catchments are transboundary and a substantial area lies beyond the Netherlands' 
country boundaries, it is reasonable to utilize measurements from rainfall gauge stations within the basin 
area provided by the weather services of the bordering countries (Germany for both the Vecht and the 
Geul rives and Belgium for the Geul). 
 

 
Figure 6: Snapshot of the interactive map made available by the rdwd R package, displaying a rain 

gauge station located near the border (catchment area), for which no public data are accessible 
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Below is a summary of the rain gauge station data collected from DWD for each catchment. The 
nearest stations for each catchment were selected using the rdwd R package's interactive map 
(Boessenkool, 2022). Unfortunately, it was observed that most border stations lacked accessible records 
(Figure 6). Nonetheless, a handful of observational stations with recent data were identified (Table 3 & 
Table 4) and utilized in this study. 

 
Table 3: Rain gauge stations nearby Geul (Source: DWD) 

STATION 
ID 

NAME Scale LON ° LAT ° HEIGHT 
(m) 

Period of record 

 
4667  
 

Selfkant-Havert daily 5.91 51.04 46 01.01.1961 to 04.04.2022 

15000 
 

Aachen-Orsbach hourly 6.02 50.80 231 01.04.2011 to 25.04.2022 
 

15927 
 

Übach-Palenberg daily 6.09 50.93 82 01.10.2017 to 19.01.2022 

 
Table 4: Rain gauge stations nearby Vecht (Source: DWD) 

STATION 
ID 

NAME Scale LON ° LAT ° HEIGHT 
(m) 

Period of record 

       
357 
 

Bentheim, Bad hourly 7.13 
 

52.30 
 

50 01.09.2005 to 31.12.2021 

1223 
 

Ringe-Großringe hourly 6.94 
 

52.59 
 

13 
 

01.09.2005 to 31.12.2021 

4849 
 

Steinfurt-
Burgsteinfurt 

hourly 7.34 
 

52.12 
 

64 
 

01.06.2005 to 05.04.2022 

3640 
 

Nordhorn-Blanke daily 7.06 
 

52.41 
 

24 01.01.1931 to 24.04.2022 

1230 
 

Emsbüren-Ahlde daily 7.29 
 

52.37 
 

48 
 

01.01.1961 to 24.04.2022 

5131 Twist daily 7.11 52.63 
 

21 01.01.1941 to 24.04.2022 

4.1.2 Additional forcing data 

The wflow_sbm hydrological model utilized in this work employs temperature and potential 
evapotranspiration as forcing data. The ERA5 dataset provides hourly and daily estimates for a variety 
of climate variables, such as temperature (T) and solar radiation (𝐾↓), from which the potential 
evapotranspiration (𝐸) can be computed. In practice, potential evapotranspiration is estimated from only 
remotely sensed daily global radiation and air temperature as inputs, using the modified Makkink 
equation, mentioned by De Bruin and Lablans (1998), as follows: 

 
  𝐿𝑣𝐸 = 0.65

𝑠

𝑠+ϒ
∗ 𝐾↓        (13) 

 
where  𝐸 denotes evapotranspiration,  𝐿𝑣 the latent heat of vaporization,  𝐾↓ is the global radiation, 𝑠 
the saturated vapor pressure gradient relative to water, ϒ the psychrometric constant.  
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4.1.3 Discharge 

Discharge data for the Vecht river (Table 5) are available from 12 gauge stations (outlet and 
interior gauges), of which eight are obtained from the Lower Saxony State Office for Water 
Management, Coastal Protection and Nature Conservation NLWKN and four are obtained from the 
Water Information System of the North Rhine-Westphalia state ELWAS with a daily temporal 
resolution.  

Table 5: River gauge stations in the Vecht river 
Station 
ID 

Name Lon Lat Temporal 
resolution 

Period of record Source 

9286106 Ohne 7.287 52.271 daily 01.02.1968 to 31.12.2017 NLWKN 

9286127 Wehr 
Neuenhaus 

6.971 52.512 daily 01.01.1950 to 30.12.2017 NLWKN 

9286136 Lage I 6.971 52.463 daily 01.03.1963 to 31.12.2017 NLWKN 

9286137 Lage II 6.971 52.465 daily 01.05.1963 to 31.12.2017 NLWKN 

9286138 Lage III 6.963 52.467 daily 01.04.1972 to 31.12.2017 NLWKN 

9286155 Osterwald 7.029 52.545 daily 01.11.1963 to 31.12.2017 NLWKN 

9286162 Emlichheim 6.857 52.604 hourly 23.05.2004 to 05.05.2022 NLWKN 

9316285 Tinholt 6.950 52.554 daily 01.11.1968 to 31.12.1997 NLWKN 

9286110 Darfeld 7.254 52.063 daily 11.01.1957 to 07.03.2010 ELWAS 

9286190 Bilk 7.296 52.238 daily 04.07.1957 to 01.01.2020 ELWAS 

9286270 Temmingsmu
hle 

7.354 52.112 daily 01.11.1957 to 01.01.2020 ELWAS 

9286455 Gronau 7.021 52.221 daily 01.11.1968 to 19.12.2019 ELWAS 

 
For the Geul river, discharge is measured at ten different points at different temporal resolutions, 

as summarized in Table 6. The data were obtained from the Water Board of Limburg (Waterschap 
Limburg) and the Agriculture, Natural Resources, and Environment entity of the Public Service of 
Wallonia (SPW). 
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Table 6: River gauge stations in the Geul 
Station ID        Name Lon Lat Temporal 

resolution 
   Period of record Source 

10.Q.29 Cottessen 5.934 50.758 15 mins 1993.01.01 to 12.11.2021 
 

WL 

10.Q.30 Hommerich 5.914 50.807 15 mins 03.09.1969 to 12.11.2021 
 

WL 

10.Q.36 Meerssen 5.726 50.891 15 mins 01.01.2010 to 12.11.2021 
 

WL 

10.Q.63 Schin op Geul 5.869 50.855 15 mins 01.01.2016 to 12.11.2021 WL 

11.Q.32 Eyserbeek, Eys 5.929 50.825 15 mins 01.01.1993 to 12.11.2021 WL 

12.Q.31 
 

Selzerbeek, Partij 5.922 50.811 15 mins 03.09.1969 to 12.11.2021 WL 

12.Q.46 
 

Selzerbeek, molentak 5.912 50.814 15 mins 01.01.1993 to 12.11.2021 WL 

13.Q.34 
 

Gulp, Azijnfabriek 5.891 50.814 15 mins 03.09.1969 to 12.11.2021 WL 

L6660 Sippenaeken 5.941 50.750 hourly 13.06.1996 to 31.12.2021 SPW 
 

52911002 Kelmis (La calamine) 6.010 50.717 hourly 01.01.2009 to 31.12.2021 SPW 

 

4.2 Wflow_sbm hydrologic model 

The wflow_sbm distributed hydrological model described by Schellekens et al. (2020) was used 
in this study to apply and evaluate the data assimilation method in rainfall-runoff process modeling. 
Wflow_sbm computes the water balance at each point in each time step using gridded topography, 
forcing data, soil, and land use, and it is used to model the hydrological processes in the Geul and Vecht 
river catchments. The kinematic wave equation is used to compute the hydrological routing for the river 
flow, surface flow, and horizontal subsurface flow. 

 The structure of the model is illustrated in Figure 7. Snow, soil moisture, upper storage zone, and 
lower storage zone are the model states considered in each grid cell. Rainfall, snowfall, snowmelt, actual 
evapotranspiration, infiltration, capillary rise, percolation, direct runoff, quick flow, and baseflow are 
the fluxes that govern the behavior of the model states. 

Built by Deltares, the wflow sbm models are provided for both the Geul and the Vecht river 
catchments. The wflow_sbm model for the Vecht is calibrated for horizontal hydraulic conductivity 
fraction in the work of Villareal (2021). As the models are assumed to be perfect (no model parameter 
uncertainties are considered further in this work), the parameters used in the model, their units and range 
of values, and the variation of each parameter throughout the catchments are as presented in Villareal 
(2021) and not detailed again here. 
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Figure 7: a) Schematic illustration of the wflow_sbm processes and states (Schellekens et al., 2020),  

b) model states and fluxes in terms of internal variable names. 

a) 

b) 
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5 RESEARCH METHODOLOGY 

This study's approach will follow the steps outlined in Figure 8.  
The first phase involves input collection, selection, and analysis. Precipitation, discharge, and other 
relevant data will be selected and evaluated from the available datasets in section 4.1. As the input errors 
propagate throughout the study, an exploratory precipitation data analysis is carried out for uncertainty 
estimation of the available gridded datasets and to determine whether it is appropriate to force the wflow 
sbm model. 

In a second step, deterministic discharge predictions are simulated in Delft-FEWS for each 
model over a 10-year historical simulation period. The results are evaluated at each station where 
observations are available. Finally, the overall model performance is assessed using appropriate 
measures, and whether they are suitable for continuing the DA analysis is determined. 

Before employing data assimilation, a reference model must be developed. An open-loop 
simulation will be used as a benchmark, and alternative possibilities (e.g., autoregressive correction) 
will be investigated.  The reference simulation and uncertainty framework selection criteria are based 
on an ad hoc process that combines literature recommendations and trial-and-error methods. A 
framework that automates the process is created in advance to be used when running the simulations 
with DA and processing the results in the consequent stage. For this purpose, and for all the analysis 
carried out in this study, Python coding is used.  

Following the configuration of the DA scheme, repeated runs of the wflow sbm model with 
OpenDA are completed, and the updated simulation output from the EnKF algorithm is compared to the 
selected reference simulation discharges, as well as the observations. To analyze the update of the model 
states with DA, a similar analysis to Rakovec (2015) is conducted. Experiments include the most 
essential model states in the study, with a special focus on the Upper Zone (subsurface water flow ssf; 
saturated water depth swd) and Soil Moisture (ustore) states. The performance of DA in spatially 
capturing model states when used with distributed hydrological models will be examined by observing 
the changes in model states, thereby accomplishing the second objective of this study. Several 
probabilistic verification techniques for verifying ensemble predictions of hydro-meteorological and 
hydrological states will be utilized to assess the outcomes of the DA application in terms of discharge 
prediction. Metrics such as the KGE, NSE, RMSE, pBIAS and r2, as described in section 2.3, are utilized 
in different parts of the results for various purposes (to assess the precipitation data error, compare the 
deterministic simulation with the observations, and assess the DA effect in the discharge prediction 
improvement). 
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Figure 8: Schematization of the research methodology workflow 
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6 RESULTS AND DISCUSSION 

In this section, results and discussion of the findings of this study are reported. Following the 
methodological framework in Table 8, the results are presented in three parts. The first section refers to 
the precipitation data analysis findings, followed by the deterministic simulation results; an analysis of 
the model performance regarding discharge forecast when applying data assimilation is then discussed, 
and finally, the DA effect on correctly updating the hydrological model states is assessed.  

6.1 Precipitation data analysis 

As mentioned in Section 2.2, uncertainties associated with the model forcing, among others, 
reflect in the DA performance. A precipitation data analysis was conducted to assess the performance 
and the uncertainties associated with the available gridded rainfall datasets, which would be employed 
to force the hydrological models. Because of its high temporal and spatial resolution, the hourly dataset 
of RADKLIM is of greater interest to use among the available datasets. The Radolan gridded dataset is 
set to be compared with the available observational datasets, both gridded (EOBS) and in rain-gauge 
stations (DWD), for each catchment.  

                 

      
Figure 9: Comparison of the cumulative and daily rainfall time series between the DWD rain gauge 

observations and the EOBS observational gridded rainfall dataset for Station ID 357 in the Vecht river 
catchment for  a) year 2021; b) the complete time series from 2011 to 2021 

 
Initially, the accumulated rainfall values in the gauge stations were compared to the respective 

approximated values of the observational gridded dataset EOBS for different years and gauge locations. 
It was noticed that the point observations obtained from the German Weather Service (DWD) for nearby 
stations in both catchments present a very high similarity (metrics like Nash Sutcliffe Efficiency 
NSE~0.99) with the respective values from the EOBS dataset, as seen in figures Figure 9 and Table 10 
for a selected rain gauge location in the Vecht and Geul river catchment respectively. Furthermore, 
equivalent results are obtained for all other stations presented in Appendix B.1. 

a) 

 
b) 
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Figure 10: Comparison of the cumulative and daily rainfall time series between the DWD rain gauge 
observations and the EOBS observational gridded rainfall dataset for Station ID 15000 in the Geul 

catchment for  a) year 2021; b) the complete time series from 2011 to 2021 
 
The high similarity of the datasets is attributed to the methodology used to derive the EOBS 

dataset, which uses the observed precipitation in the rain stations to interpolate the data and obtain the 
gridded data. Assuming a perfect agreement between the E-OBS gridded dataset and the corresponding 
point observations in the catchments, it is more sensible for the Radolan dataset to be further evaluated 
in comparison with the gridded EOBS dataset, to construct a fuller picture of it, not only in compared 
in points but also spatially.  

 

            
Figure 11: EOBS and Radolan precipitation resampled into annual maximum precipitation values for 

the station ID 15000 in the Geul catchment 
 

a) 

 b) 
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Figure 12: EOBS and Radolan precipitation resampled into annual mean precipitation values for the 

station ID 15000 in the Geul catchment 
 
The annual maximum and mean precipitation trends of both datasets for station 15000 in the 

Geul river catchment are observed in Figure 11 and Figure 12, respectively. For completeness, the results 
for all stations are presented in Appendix B.  

 

 
Figure 13: a) Daily precipitation at station point location with ID 5131 in the Vecht river catchment 

derived from the Radolan gridded dataset and the EOBS gridded observational datasets. Uncertainty of 
the Radolan is presented as a 95% uncertainty ban; b) Annual values of selected performance metrics 
(NSE, RMSE, KGE); c) Correlation scatter plots of the Radolan and EOBS daily time series for the 

10-year period. 
 

 a) 

 b)  c) 
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Daily precipitation time series are presented below for a selected point location in each 
catchment for the period of June-July 2021 at Geul; and June, July 2016 for the Vecht. Both gridded 
datasets are interpolated in the point locations with coordinates corresponding to nearby rain gauge 
stations. In addition, a 95% uncertainty band is presented for the Radolan dataset. While in Figure 13a 
and Figure 14a,  the daily precipitation is presented only for a selected period, including the July 2021 
event in the Geul catchment and the summer months of 2016 in the Vecht, the correlation between the 
datasets and the other metrics are computed and plotted in Figure 13b,c and Figure 14b,c for the 
complete time-series (2011-2021).  

 

 
Figure 14: a) Daily precipitation at station point location with ID 15000 in the Geul catchment derived 

from the Radolan gridded dataset and the EOBS gridded observational datasets. Uncertainty of the 
Radolan is presented as a 95% uncertainty band; b) Annual values of selected performance metrics 
(NSE, RMSE, KGE);  c) Correlation scatterplots of the Radolan and EOBS daily time series for the 

10-year period. 
 
In Figure 15, a spatial comparison of the datasets is presented, where the maximum and mean 

annual values for 2021 are computed for the same grid covering both basins. The EOBS grid is given 
on the left, as it can be distinguished from the grid resolution (11 km), which is coarser than the Radolan 
(1km) on the right. The mean annual precipitation values in Figure 15a and the maximum annual values 
in Figure 15b present a considerable similarity in the spatial spread of the precipitation of the two 
datasets. For a better understanding of the differences in the maximum values, Radolan is down-sampled 
in the 11 km grid as seen in Figure 15c, where the Radolan seems to be underestimating the observational 
dataset estimates.  

 a) 

 b) 
 c) 
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Figure 15: E-OBS (on the left) vs. RADOLAN (on the right) spatial comparison for the grid covering 

both catchments a) annual mean rainfall b) annual max rainfall c) annual max rainfall resampled 
(11km Radolan grid to match the EOBS grid) 

 
After the Radolan and the EOBS observational precipitation dataset were analyzed for the entire 

available period, both in point locations and spatially, we can now qualitatively derive judgment based 
on their agreement. As noticed throughout the analysis in this section, the Radolan gridded precipitation 
fails to capture the extreme precipitation events, presenting either overestimation or underestimation of 
peak flows. At the same time, it shows more consistency in representing smaller events. Despite the 
radar data being calibrated with gauge observations, there might be a need for bias adjustment correction 
of the radar dataset.  
 

 a) 

b) 

c) 
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Table 7: Performance metrics of the Radolan, EOBS rainfall dataset comparison for the complete daily 
time-series (2011-2021) 

 KGE 
[-] 

NSE 
[-] 

RMSE 
[mm/day] 

Catchment averaged (Geul) 0.68 0.52 2.82 

Station 15000 0.74 0.54 2.94 

Station 4667 0.53 0.47 3.07 

Station 15927 0.69 0.52 2.75 

Catchment averaged (Vecht) 0.73 0.51 2.70 

Station 5131 0.75 0.48 2.72 

Station 357 0.72 0.58 2.75 

Station 1230 0.71 0.49 2.81 

Station 1223 0.73 0.56 2.64 

Station 3640 0.68 0.45 2.96 

 
Overall, as indicated by the metrics presented in the plots in this section (See also Appendix B.2) 

and summarized in Table 7 for all stations, the Radolan presents a reliable performance with KGE values 
varying from 0.7 to 0.58 and NSE values ranging from 0.45 to 0.58 and RMSE values ranging from 2.64 
to 3.07 mm/day. Given its high spatial and temporal resolutions of 0.1° (~10 km) and 1 hour, it is thought 
to be adequate for use in a precipitation-fed, fast-responding catchment like the Geul. Additionally, it 
indicates good performance in the case of a larger catchment, such as the Vecht; hence rainfall input for 
the wflow_sbm model simulation in this work is based on Radolan forcing. The Radolan rainfall 
estimate error metrics will be used as a guide when selecting the input uncertainty in the DA experiments 
conducted later in this work. 

6.2 Deterministic simulations 

To demonstrate that the implemented models can simulate reasonable discharge estimates using 
the Radolan rainfall product as forcing, this section presents the observed discharges and simulated ones 
for selected gauge locations in both catchments. In the Delft-FEWS platform, where the hydrological 
models of both catchments are integrated with the respective input data, the first open loop simulations 
(without data assimilation) were run.  
The wflow_sbm models were initially forced with Radolan precipitation data and ERA5 data for 
potential evapotranspiration. The historical simulations are run for ten years, starting January 2011 to 
December 2021, with a 10-day timestep, assuming perfect models and perfect forcing data. From the 
first results of the open loop simulations (without DA and without the Radolan data gap filling with 
ERA5), it is noticed that for the case of Emlichheim, the station presented in Figure 16 for illustration, 
as is also noticed in all other stations for which observational data are available, the simulated flows 
differ significantly from the observed ones. Due to gaps in the hourly rainfall dataset, this discontinuity 
is reflected in the simulated discharges, as for every gap in the input forcing, the model restarts with a 
cold state, often overestimating the next time step, resulting in the simulated discharge not being reliable, 
and the model failing to capture both flow peaks and the baseflow over the entire simulation period. 
This was resolved by setting up an alternative configuration so that ERA5 precipitation data are used to 
fill in any gaps in the Radolan dataset that are longer than two hours. Following the application of this 



Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model: 
A case study of the Overijsselse Vecht river.  29 
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management. 

 

adjustment, the simulated discharges exhibit a distinct consistency for the whole simulation period. The 
rest of the analysis uses the “corrected” Radolan forcing. 
 

 
Figure 16: Hourly Observations of the Emlichheim discharge and wflow_sbm model difference before 

and after correction with ERA5. In red, gaps in the uncorrected model output are highlighted. 
 

 
Figure 17: Simulated VS Observed Mean daily runoff, for selected stations in the Vecht catchment, for 

2016 
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Simulated flows with the wflow_sbm model, along with the corresponding observed flows for 
a few gauge locations in the Vecht, are presented in Figure 17 for a particular year (2016). The historical 
simulations were run for a 10-year period (2011-2021), and depending on the availability of 
measurements at each gauge, the correlation statistics are derived as shown in Figure 18 for each station. 
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Figure 18: Correlation of simulated and observed discharge scatter plots at selected station location in 
the Vecht catchment. Note that the correlation is computed for a different period in different stations, 

depending on the period of record available at each station 
 
The Nash-Sutcliffe model efficiency (NSE) and other metrics are computed at each stream 

gauge location before the discharges are assimilated to validate the outcomes of the DA experiment. In 
the case of Emlichheim, the catchment outlet, the NSE model efficiency coefficient between the 
measured and simulated discharges is approximately 0.8, indicating that the hydrological model 
performs well. Moreover, it is essential to recognize that NSE is sensitive to extreme values (peak flows) 
that were not previously filtered. Additionally, for a 10-year simulation interval, the root mean-square 
error (RMSE) varies from 1.11 m3/s at Temmingsmuhle to 9.5 m3/s at Emlichheim. For completeness, 
additional performance statistics computed for the long simulation period, which spans from 2011 to 
2021 and varies in different stations, are summarized in Table 8.  

 
Table 8: Performance statistics to evaluate the model's predictive ability in selected stream gauge 

stations in the Vecht river catchment 
 r  

 [-] 
NSE 
[-] 

RMSE 
[m3/s] 

pBIAS 
[%] 

Emlichheim 0.79 0.63 9,5 -8.0 

Lage I 0.59 0.54 4.36 -14.47 

Ohne 0.78 0.22 3.75 -12.11 

Wehr Neuenhaus  0.79 0.57 5.01 -20.7 

Osterwald 0.71 -0.02 1.21 65.36 

Bilk 0.80 0.36 1.72 -16.85 

Temmingsmuhle 0.84 0.54 1.11 -21.74 

Gronau 0.80 0.41 1.56 3.65 

 
Similarly to the analysis carried out for the Vecht river catchment gauge locations, results are 

presented below for the Geul river catchment, where a different period is selected to be presented (part 
of 2021) because of the interest in the July 2021 flood event.  
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Figure 19: Simulated VS Observed Mean daily runoff, for selected stations in the Geul catchment, for 
the first half of the year 2021 
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Figure 20: Correlation of simulated  and observed discharges scatter plots at selected station location 

in the Geul river catchment. Correlation is computed for a different period in different stations, 
depending on the period of record available at each station 

 
The results of the deterministic simulations reported in this section will aid in selecting a 

benchmark simulation to contrast with the simulated discharges in the following step when observed 
discharges are assimilated. The grid-based wflow_sbm models produced satisfactory results at the Geul 
and Vecht catchment scale despite not being recalibrated. 

 However, the direct comparison of the simulated and measured discharges in various stations 
presented in Figure 20, together with the metrics summarized in Table 9, indicate that the available 
model for the Geul River does not correctly represent high peak flows, as in the case of the July 2021 
flood event (for other years as well), and, as in this study, uncertainties associated with the model 
parameters are neglected, in the case of a quick responding catchment with a time skill of just a few 
hours, proceeding with a data assimilation scheme where we only account the uncertainties associated 
with the forcing data and observations, results in very unrealistic results.  

Moreover, as using DA with wflow_sbm is experimental and incomplete, technical problems 
were encountered while linking the Geul wflow_sbm to OpenDA. Hence, the data assimilation setup 
and results given from now onwards are limited to the Vecht River catchment; however, some 
speculations will be made for the Geul River based on the conclusions drawn from the Vecht River. 
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Table 9: Performance statistics to evaluate the model's predictive ability in selected stream gauge 
stations in the Geul river catchment. 

 R 
[-] 

NSE 
[-] 

RMSE 
[m3/s] 

pBIAS 
[%] 

Sippenaeken 0.59 0.076 1.54 -34 
Cottessen 0.93 0.380 1.93 -22 
Hommerich 0.99 -3.83 9.07 91.34 

Meerssen 0.78 -0.54 4.47 -31 
Schin op Geul 0.85 -7.67 8.20 -17.20 

 

6.2.1 Model States 

Before updating with DA, we look at the model states of interest. As stated in the study's 
research objectives, this analysis is limited to the Vecht river catchment. Of particular interest to analyze 
are the slow-changing components of the models, Subsurface Flow (ssf), Saturated Water Depth (swd), 
and Soil Moisture (ustorelayerdepth) states, the behavior of which, together with other hydrological 
states, is depicted in Figure 21 over a year. Since we want to examine the effect of updating with the 
EnKF in the hydrological states, a preliminary analysis was performed to investigate the states' behavior 
and whether there is any association between them. Figure 21 hints at a considerable correlation between 
the river discharge (q_river) and the saturated water depth and subsurface flow, becoming more visible 
during spring, where the flow peaks usually happen. However, there is a time lag between the peaks of 
those components.  

 

 
Figure 21: Hydrological model states variation at Emlichheim for a selected year (2016) 
 
As it is challenging to derive judgment from the annual variation of the model states, a 

correlation heatmap of model states is presented in Figure 22. As expected, the correlation is positive 
and more substantial between the states of interest (ssf, swd, ustorelayerdepth) and the river discharge 
(q_river) during the whole simulation period. Additionally, there is a considerable correlation between 
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the surface water flow and depth, with the river flow and river water depth. Therefore, further, in the 
analysis, only the states that indicated higher correlation values (a correlation threshold of 0.1 was 
considered) are included in the DA experiment, namely the subsurface water flow (ssf), saturated water 
depth (swd), overland flow (q_land), overland water depth  (h_land), soil moisture in three layers 
(ustorelayer1, 2 and 3), river flow (q_river) and river water depth (h_river). States with negative 
correlation (tsoil) or correlation values lower than 0.1 (snow) are excluded from the rest of the analysis. 
Additionally, the canopy storage state is excluded. 

 
Figure 22: Model state correlation at Emlichheim 

6.3 Experiments with DA 

6.3.1  Experimental setup 

This section presents the filtering methods’ configuration setup for the assimilation of 

observations in the wflow_sbm model to improve the discharge predictions, particularly at the catchment 
outlet. The hydrological observations used for updating the model states are discharge measurements 
due to their availability in high temporal resolutions and their good representation of the catchment 
wetness conditions, which is significant for operational forecasting. Model states are updated with 
externally measured variables to obtain proper initial conditions in the following timestep. The 
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observational discharges are assimilated daily for two selected flood events in the Vecht river basin 
depicted in Figure 23. Additionally, an overview of the selected assimilation periods is given in Table 
10. Only discharge data at the catchment outlet (Emlichheim) are assimilated. Another location (Gronau) 
is presented to validate the results in the first experiment. In contrast, discharge data are assimilated in 
5 different locations in the second experiment. Finally, results are presented again for the stations of 
Emlichheim and Gronau (the other point results are shown in the Appendices).  

 In this work, only input forcing uncertainty is represented from ensembles, and observation 
uncertainties are considered, disregarding any uncertainty related to the model parameters or initial 
conditions. A precipitation ensemble is comprised of a limited number of spatial realizations in time that 
represent uncertainties related to precipitation's spatial and temporal variation (Rakovec, Hazenberg, et 
al., 2012). The ensemble of simulations is derived from perturbing the model forcing with stochastic 
spatially correlated model error. In an open loop simulation, the model is forced with uncertain rainfall 
input with a simulation memory of forty-eight ensemble members derived using stochastic perturbation 
for precipitation and deterministic PET to produce an ensemble of simulated discharges out of which a 
single realization was chosen to be further used as a reference for comparison with the DA ensemble 
discharges. The selection procedure of this reference simulation is detailed in the next section. The 
ensemble size was selected to be forty-eight members for the OL simulations and 16 for the filtered 
experiments for computational reasons. However, tested experiments with 24 and 48 realizations were 
not necessarily better than those with sixteen ensemble members. The error of the discharge observations 
is considered to have a normal distribution with a standard deviation of (kQ_obs)2, with k ranging 
between 0.01 and 0.1 (as seen in Weerts & el Serafy, 2006). 

A sensitivity analysis was carried out to investigate the influence of the error selection for both 
the forcing and the observations (Appendix C.1). Based on the findings, the best selection of errors was 
made to continue the rest of the analysis. The EnKF is used to update the hourly spatially distributed 
wflow_sbm model's grid-based distributed states. The hydrological cycle is simulated for the Vecht 
(1800 km2) for two small-scale experiments. First, the EnKF algorithm was applied to a one-month 
interval from 15th June to 15th of July 2016, which included both a dry and a wet period, with one flood 
event, and to a second experiment, for the period 15 January - 15 March 2016, with three consecutive 
flood events.  

 

 
Figure 23: Observed discharge in the outlet (Emlichheim) and other interior flow gauges in the Vecht 

river basin during 2016. Two characteristic winter and summer flood events are selected for the 
analysis 
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Extensive runs are performed in the first experiment to examine the impact of different uncertainty 
values assigned to the forcing input and observations, select a reference simulation, as well as investigate 
the effect of DA in the model states. In contrast, in the second experiment, where a longer assimilation 
window is considered, the perturbation errors and reference simulation are chosen in the same way as 
in the first experiment. In addition, the effect of DA in the predicted discharges is evaluated. 
 

Table 10: An overview of the experiment periods selected for the DA analysis 
  

Period 
Maximum 
observed 

discharge [m3/s] 
1 15 Jun 2016 – 15 Jul 2016 81 

2 15 Jan 2016 – 15 Mar 2016 98 

 

6.3.2 Selection of a reference simulation. 

Open loop ensemble model realizations were generated before DA application to ensure good 
model results, no numerical instabilities, and select a reference simulation. These simulations were run 
without introducing any error to the system, and the selection of the benchmark simulation was made 
considering the ensembles should be as near to the deterministic simulation as possible and have a 
reasonable ensemble spread. In this work, the selection of the benchmark simulation is made by a visual 
inspection, while several metrics are available in the literature. Additionally, the standard deviation of 
ensembles can be evaluated against the measurements; if the spread of the standard deviation covers the 
observations, it is deemed appropriate (Dharmadasa, 2014). As the deterministic runs produced fair 
results, as seen in the previous chapter, an open loop probabilistic simulation is considered more suitable 
as a reference simulation to evaluate the DA effect.  

The most challenging part of a DA experiment lies in selecting the optimal input uncertainties. 
While there are reference values for the precipitation and observation noise to be used in DA 
experiments, to be able to choose the best reference simulation based on the proximity of the 
probabilistic simulation with the deterministic one and the most reasonable ensemble spread, a 
sensitivity analysis was performed in advance to investigate the response of the filtered model when 
different perturbation noises for the precipitation and observations are given. The results of multiple 
runs conducted with the first experimental setup to investigate how the filter reacts when increasing or 
decreasing the noises of both forcing and the observations, summarized in the appendix, were utilized 
to derive the reference simulations presented in this section. The simulations presented in the appendix 
are conducted with eight ensemble members for computational efficiency. Their only purpose is to guide 
us in selecting the correct uncertainty values for the rest of the analysis.  

From the extensive work in the appendix, the three best Open Loop scenarios were determined 
as follows:   
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Figure 24: Open loop simulation results for three different combinations of uncertainties: a) forcing 

standard deviation 2.5, spatial correlation 30 km; b) forcing standard deviation 2, spatial correlation 30 
km; c) forcing standard deviation 2, spatial correlation 10 km 

 
While when it comes to metrics, all three scenarios present similar results when compared with 

the deterministic simulation (RMSE mean value between the ensemble mean of the OL simulations and 
the deterministic one is 12.49, 12.13, and 12.08 m3/s, respectively for cases a, b and c in Figure 24), the 
OL reference simulation was chosen as the one with the most reasonable ensemble spread, which in this 
case corresponds with the one in Figure 24b.  A good ensemble spread has a relatively small spread, 
where uncertainty is small, but it also should have the ability to span the observations. 

6.3.3  Model performance regarding discharge prediction 

Different parameter values for the observational noise were investigated (See appendix C.1), 
and the one that produced the best results (ensemble spread is closer to the observed values) is presented 

 a) 

 b) 

 c) 
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in this section. The parameters selected for the noise models and the chosen number of realizations are 
summarized in Table 11. Finally, the DA performance regarding discharge predictions is evaluated using 
RMSE.   

Table 11: Error model setup for the DA experiments 
Qobs 
 [m3/s] 

EnKF 
 [Nr. of 

ensembles] 

Forcing 
[mm] 

Spatial 
correlation 

[m] 
0.1 

multiplicative 
8 2.5 

multiplicative 
30000 

 
Initially, the error model of the forcing was introduced as an additive, considering the 

uncertainty metrics that resulted from the precipitation data analysis of Radolan in section 6.1. However, 
this often leads to algorithm failure as negative precipitation values are produced at certain timesteps. 
To avoid this, the forcing noise was set as multiplicative. At the same time, outcomes from the sensitivity 
analysis were utilized for determining the optimal value, where trial and error runs were made for a wide 
range of forcing uncertainty (factors from 0.5 to 3, results from 0.5 to 1.5 are presented in the appendix). 
A multiplicative error in the range of 2-3 mm produces the best discharge estimates, as seen in the results 
presented throughout section 6.3. It is difficult to comprehend how such a sizeable multiplicative error 
produces the best estimates; however, this choice is backed up by the sensitivity analysis results. 

Additionally, a spatial precipitation correlation of 30 km was introduced. The range of the 
observations error model was selected based on literature (Weerts & el Serafy, 2006) and was further 
defined to be 0.1 based on the sensitivity analysis. Below, the results of the two experiments with the 
same error model configurations but different assimilation timelines and the number of assimilation 
locations are presented and discussed.   

6.3.3.1 Experiment 1 

The first experiment covers 30 days from 15 June 2016 to 15 July 2016, when a flood with a 
peak discharge of 81 m3s-1 is observed. Discharges are assimilated every 24 hours from the station of 
Emlichehim, located near the catchment outlet. The error model configuration for both experiments is 
summarized in Table 11.  

 

 
Figure 25: DA simulation results, experiment 1, Emlichheim. The observed discharges are given in the 

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of 
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the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a 
95% uncertainty interval, in the sky blue. 

 
The visible lag may be attributed to uncertainties in the initial conditions, which are not 

considered in this work, and perhaps the ensemble size. In addition, as the assimilation window 
progresses, the influence of updating becomes more apparent, and the ensemble spread better captures 
the observations. This indicates that a longer assimilation window would be more suitable; however, as 
the time available for this study is restricted, smaller assimilation windows are preferred to avoid 
extensive computational processing times.  

 
Table 12: An overview of the mean, maximum and minimum flows corresponding to observed, open 

loop, and filtered discharges at Emlichheim 
 Mean Max Min 

Q_obs [m3/s] 27.65 85.85 10.13 
Q_ref [m3/s] 19.62 96.43 4.08 

Q_EnKF [m3/s] 23.16 104.89 4.09 
 

 
Figure 26: DA simulation results, experiment 1, Gronau. The observed discharges are given in the 

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of 
the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a 

95% uncertainty interval, in the sky blue. 
 

Table 13: An overview of the mean, maximum and minimum flows corresponding to observed, 
open loop and filtered discharges at Gronau. 

 Mean Max Min 
Q_obs [m3/s] 5.02 27.79 1.19 

Q_ref [m3/s] 2.84 19.34 0.37 
Q_EnKF [m3/s] 3.05 21.17 0.40 

 
Figure 25 depicts the influence of discharge observations assimilation from Emlichheim at 

Gronau, an interior gauge upstream of the assimilation location. As observed in the instance of 
Emlichheim, assimilation brings simulated discharges closer to the observed values. The following 
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paragraphs will explain whether this effect is less pronounced in the interior gauges than at the 
assimilation location. Appendix C.2 contains additional results of the DA effect on the expected 
discharges at different interior gauges of the basin. In the case of Gronau (for location in the catchment, 
see gauge nr. 5 in Appendix A), the filtered discharge is closer to the observation than the reference; 
however, the ensembles spread cannot capture the observation peak discharge as seen in Figure 26. 

 

 
Figure 27: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run 
and the daily observed discharges in selected stations. The red lines in the boxes represent the RMSE 

median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the 
circles show the extreme values of RMSE. 

 
A summary of the data assimilation performance for all gauge stations is shown in Figure 27, 

where boxplots of the RMSE between the ensemble means for each day of the assimilation window 
between the discharges updated with EnKF and the observations are presented to evaluate the efficacy 
of DA. Figure 28 also shows the RMSE between the reference simulation ensemble mean and the 
observations. One approach for evaluating the DA effect is to compare the RMSE (MAE) values at each 
gauge in the simulation with and without. As seen in Figure 27 and Figure 28, the updated simulation 
reduces the RMSE values at Emlichheim, whereas at other stations, the effect is less pronounced, or 
there is no positive effect at all (e.g., Bilk).  
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Figure 28: Boxplot of RMSE of the mean ensemble for each day between the open loop reference run 
and the daily observed discharges in selected stations. The red lines in the boxes represent the RMSE 

median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the 
circles show the extreme values of RMSE. 

 
The coefficient of determination R2, a goodness of fit measure that represents the percentage of 

reduction in prediction error, calculated using the RMSE values in Figure 27 and Figure 28, is given in 
Table 14, where positive values indicate a positive effect of DA, whereas negative values the opposite. 
As expected, the DA effect when assimilation only in one location downstream has little or no positive 
impact at all in most upstream gauges. However, as the stations near the outlet present higher interest in 
flood forecasting in the Netherlands, our focus remains at Emlichheim, where the data assimilation 
process results in a 21.05 % improvement of the model discharge prediction. The results summarized in 
the table below are analogous to hydrograph results. Bilk was notably the station where the OL 
simulation had a significantly better performance than the DA one, as seen in Appendix C.2.  
 

Table 14: The coefficient of determination R2 [%] for seven different stations after DA application 
 LageI Osterwald Wehr 

Neuenhaus 
Ohne Bilk Gronau Emlichheim 

R2 [%] 3.57 16.67 -8.33 -11.76 -511.11 5.26 21.05 
 

Figure 29 depicts a direct comparison of the RMSE between the OL and DA ensemble mean, 
where it is evident that the RMSE is lowest at the assimilation location. Overall, we may generalize that 
data assimilation is effective, as there is a considerable reduction in the RMSE for the downstream 
gauges but less for the upstream ones. That is closely related to the distance from the point of 
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assimilation, which in this case is the outlet; therefore, as anticipated, the upstream gauges are influenced 
by DA less or not at all. 

 

 
Figure 29: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run 
and the open loop reference run in selected stations. The red lines in the boxes represent the RMSE 

median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the 
circles show the extreme values of RMSE. 

6.3.3.2 Experiment 2  

For the second experiment, a larger assimilation window is considered, covering a 60-day period 
from 15 January 2016 to 15 March 2016, where three consecutive flood peaks are observed, with a 
maximum discharge of 98 m3s-1. The discharge observations are assimilated every 24 hours from 
Emlichheim (near the outlet of the catchment) and four interior gauges (Lage I, Ohne, Bilk, Gronau), 
and the error model is chosen the same as in the first experiment as summarized in Table 11. The 
reference simulation selected for the second experiment is developed for a significantly longer 
simulation time, while the assimilation run is only done for 60 days for computational reasons. The 
different initial conditions for the reference and DA run contribute to the significant differences between 
the two in the initial timesteps, as noticed in the results below.  

As seen in Figure 30 and the summarized extreme and mean discharge values for the 
observations, reference simulation, and filtered results in Table 15, it is noticeable that the results with 
DA are again closer to the actual values (observations) than the ensemble means of the OL simulation. 
A mismatch is noticed in the first steps, stemming from uncertainties in the initial conditions. The 
positive effect of a longer assimilation frame is noticed, especially in the last flow peak, where the 
ensembles capture the observations very well.  

Additionally, an apparent positive effect of streamflow assimilation is shown in Figure 31, 
which illustrates the results for the interior gauge of Gronau, where it is notable that the simulations 
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demonstrate a very good fit with the observed values. Moreover, the extremes and mean discharge and 
captured very well at Gronau (see Table 16), with the maximum discharge with DA (Q_EnKF) going 
down to 19.73 m3/s from maximum open loop reference discharge (Q_ref) at 21.92 m3/s. The maximum 
discharges refer to the second flood peak with an observed discharge of 15.35 m3/s, and this discharge 
reduction translates to a 10% reduction in the absolute error. 

 
Figure 30: DA simulation results, experiment 2, Emlichheim. The observed discharges are given in the 

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of 
the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a 

95% uncertainty interval, in the sky blue. 
 

Table 15: An overview of the mean, maximum and minimum flows corresponding to observed,  
open loop and filtered discharges at Emlichheim for the second experiment.  

 Mean Max Min 

Q_obs [m3/s] 46.74 105.52 19.51 

Q_ref [m3/s] 31.64 126.73 12.95 

Q_EnKF [m3/s] 34.93 114.69 10.36 

 
As was anticipated, the simulation with the discharge measurements assimilation at five selected 

catchments produces better results, bringing the DA discharge predictions closer to the observed 
discharges. This positive effect is noticed at all locations where streamflow observations were 
assimilated (See Appendix C.3). Similarly to the first experiment, the assimilation effect increases as 
we go further in the assimilation window. Additionally, the lower flows at this station might 
substantially affect the DA application in this gauge. This is not only attributed to the DA effect but also 
to the flow magnitude at each assimilation station. It was noticed that the DA effect is more significant 
in stations with lower flows. This is also related to the model's ability to represent lower flows better, as 
was noticed in the first experiment and the deterministic run.  
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Figure 31: DA simulation results, experiment 2, Gronau. The observed discharges are given in the 

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of 
the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a 

95% uncertainty interval, in the sky blue. 
 

Table 16: An overview of the mean, maximum and minimum flows corresponding to observed, 
open loop and filtered discharges at Gronau for the second experiment.  

 Mean Max Min 
Q_obs m3/s] 4.87 15.35 1.91 

Q_ref [m3/s] 4.29 21.92 0.9 
Q_EnKF [m3/s] 4.89 19.73 1.06 

 
From the additional results presented in Appendix C.3 and summarized in Figure 32, it is 

apparent that not only the location of the flow gauge influences the DA results but also the magnitude 
of flows at each station, as the wflow_sbm model has a better predictive skill at lower flows, as also 
seen in the deterministic simulations in section 6.2. Overall, the mean RMSE between the observations 
and discharges with DA is slightly lower than the RMSE between the observations and the OL 
simulation discharges. However, the RMSE spread is distinctively smaller after DA, especially at 
Emlichheim.  
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Figure 32: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run 

and the daily observed discharges in selected stations. The green lines in the boxes represent the 
RMSE median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and 

the circles show the extreme values of RMSE. 
 

                         
Figure 33: Boxplot of RMSE of the mean ensemble for each day between the open loop reference run 

and the daily observed discharges in selected stations. The green lines in the boxes represent the 
RMSE median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and 

the circles show the extreme values of RMSE. 
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Utilizing the metrics presented in Figure 32 and Figure 33, the coefficient of determination R2 

is computed as seen in Table 17, where positive values of R2 are given for all assimilation stations 
considered in the second experiment. This indicates a positive effect of the DA application. However, 
the percentage of reduction error is related to the discharge magnitude in each station, so a higher rate 
of error reduction (36.41% at Gronau) does not necessarily translate into a higher absolute error 
reduction, as R2 is not always straightforward. Noticeably, the DA effect is positive at all stations when 
multiple streamflows are assimilated, unlike the first experiment where measurements only near the 
outlet were assimilated. However, for the rest of the analysis, the first experiment with a shorter 
assimilation window and one assimilation location is considered when exploring the effects of DA in 
hydrological states and fluxes spatially.  
 

Table 17: The coefficient of determination R2 [%] for five different stations after DA application  
 LageI Ohne Bilk Gronau Emlichheim 
R2 [%] 3.98 23.46 29.94 36.41 3.82 

 

6.3.4 Model performance regarding state updating 

The following case is presented to explore the effect of the DA on the update of spatially 
distributed model states. The mean difference between the predicted and updated model states (refers to 
the EnKF algorithm steps as described in Figure 1) is shown in Figure 34 for three different time steps, 
for every state included in the analysis, selected after examining the model performance regarding 
discharge predictions for the first experiment (See 6.3.3.1). These examples aim to aid our understanding 
of the discharge measurement assimilation impact in the gridded hydrological model. As the model 
simulations (at the outlet and most of the interior gauges) are mainly underestimating the observations, 
water is added to the system during the update step; however, this remains location specific as further 
from the assimilation location, the model overestimates the discharges, so water is removed from the 
system.    

Below we see how the EnKF captures the hydrological system spatially, varying from a positive 
to a negative difference depending on the location on the grid.  

 
       23 Jun                    25 Jun                                  29 Jun                      ∆ 

                       
Q [m3/s] 
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SM.layer3 [mm]                 

Figure 34: Difference between the predicted (instates) and updated (outstates) model states on three 
selected days (23, 25, 29 June 2016). Only the most sensitive model states are shown, discharge (Q), 

land flow (Qland), subsurface flow (ssf), saturated water depth (swd), and soil moisture in three 
different layers 

 
As we are assimilating near the outlet, the effect of assimilation in nearby gauges will mimic the effect 
at the assimilation point, where the EnKF adds water to the system as seen in the hydrographs of 
Emlichheim and other downstream gauges LageI, Wehr Neuenhausen, Osterwald; While the effect of 
DA is rather positive at downstream stations (during the flood peak, around 25th of June) that present a 
similar situation with Emlichheim (the model underpredicts the flood peak), in other stations where the 
model overpredicts (case of Ohne for example) or produces simulations very close to observations (Lage 
I), the effect of outlet discharge DA is negative as the EnKF updated discharge values are further than 
the simulated ones without DA (case of Wehr Neuenhaus).  
For the more upstream gauges like Bilk, Ohne, and Gronau, spatially, we notice that water starts to be 
removed from the system on the 25th of June (flood peak is registered earlier in the upstream stations). 
On 29th, most of the upstream area presents negative values of the hydrological states, making sense as 
the water is moving from upstream to downstream.  Again, as data is assimilated only near the outlet, 
the updated model discharge predictions do not follow necessarily follow the observations in the 
upstream stations, resulting in little or no positive effect at all in improving the model discharge 
predictions.  

From the model states investigation, we notice first that the streamflow assimilation impacts not 
only the overland state components but also considerable changes are detected in the subsurface 
components. Typically, by adding water to the system near the outlet, this water is drained from the 
most upstream locations as seen in the spatial presentation of the discharge Q. A negative difference in 
the overland flow Qland is noticed around the time of the flood peak upstream, which reflects that the 
model overestimates the Qland. At the same time, it is noticed that subsurface water flow is added in 
the downstream part of the catchment, indicating that the model correctly redistributes the water in the 
system when applying the EnKF. This is also noted in the saturated water depth (swd), which is 
increased downstream near the flood peak time and shows negative values further upstream where the 
flood peak has passed. The further we move from the flood peak time, the lower the saturated water 
depth gets upstream, as seen on the column corresponding to the 29th of June. The effect is also noticed 
in the uppermost soil moisture layer before and near the flood peak. 

In contrast, significant changes are only noticed in the deeper layers later in time. Overall the 
system state dynamics are captured accurately from the update with the EnKF; however, whether this 
new distribution represents the “true” model states remains unknown as it is difficult to observe all 

hydrological model states. Additionally, as mentioned above, EnKF capturing the state dynamics 
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spatially does not necessarily lead to improved discharge predictions in the catchment. However, as was 
already mentioned assimilating more observations will lead to better discharge estimates and therefore 
better state estimates in the whole catchment.   

However, as the goal of this study is to investigate the effect of DA in improving the state 
estimates mainly near the outlet (the point of interest for operational flood forecasting in the 
Netherlands), the experiment where we assimilated only near the outlet was deemed enough to answer 
the respective research question, also considering the time and computational constraints.  
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7 CONCLUSIONS AND RECOMMENDATIONS 

This section provides a summary of the work reported in this study and the key findings that address 
the research objectives. The limitations of the study's methodology and approach are also addressed. 
Finally, conclusions and future research recommendations are outlined. 

7.1  Summary  

To explore the above, in the first part of this thesis, a precipitation data analysis was conducted 
to give insight into the selected precipitation product quality and whether it is appropriate to be used in 
the assimilation experiments. From this analysis, the precipitation product demonstrated a satisfactory 
performance, confirmed by several metrics employed. For this reason, it was deemed appropriate to be 
used as input forcing in the DA model. Additionally, utilizing information on the uncertainties associated 
with the forcing product, the error model for the DA scheme was further selected. Finally, this work also 
includes a short analysis of the observed and model discharges obtained from a deterministic historical 
10-year simulation run in Delft-FEWS, which suggests that the model has a good overall performance. 
However, peak flows are not always adequately captured.  
Utilizing OpenDA, a generic data assimilation toolbox, two data assimilation experiments were 
conducted using the same error model but differing in from the assimilation window (one short and one 
longer experiment) and the number of observation locations assimilated (one location for the first 
experiment and five locations for the second one). Regarding the uncertainty model, as the model is 
considered to be perfect, no uncertainties related to the model error are considered when applying DA, 
but on the contrary, the errors (mismatch between observations and model simulation)  we attribute only 
to the observations, the uncertainty value of which was selected based on literature suggestions, as well 
as the results from the deterministic run and a sensitivity analysis carried out to enhance our 
understanding of how the DA scheme works. For the input forcing uncertainty, a trial and error approach 
was the most effective in selecting the optimal forcing uncertainty. Before the assimilation experiments, 
reference simulations were selected for each experiment, using open-loop probabilistic simulations with 
48 ensemble members. The run that produced the most reasonable ensemble spread closer to the 
observations, and deterministic simulation was selected. The results confirmed that a longer assimilation 
window would result in better estimates, especially in the later timesteps of the simulation. 

Additionally, assimilating only in one location does not always result in improved predictions in 
the other stations, as the assimilation effect will depend on the distance of each station from the 
assimilation location and the flow magnitude at each station. However, when multiple streamflow 
observations were assimilated, the assimilation effect results were positive at every checked location. 
Lastly, the hydrological state dynamics when updating with the EnKF were investigated, and results 
suggest that the discharge assimilation has a positive effect in capturing the system dynamics of the 
wflow_sbm model; however, this is mainly a qualitative assessment, as it is challenging to derive 
quantitative judgment while we don't know the 'true' system states. To conclude, streamflow assimilation 
was considered to positively affect the discharge predictions and capture the system state dynamics. 
However, this study's several limitations are elaborated in the following section, and future research 
directions are given.  
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7.2 Limitations 

This study's approach and methodology have several shortcomings. First, there are limitations 
connected with the study's assumptions, such as the assumption of a faultless hydrological model and 
initial conditions. However, incorporating the unaccounted-for uncertainties into this study will 
undoubtedly result in more accurate estimations, allowing the DA impact on the discharge predictions 
to be judged accurately. 
Only the precipitation forcing input in the DA experimental setup is assumed to be subject to error, 
whereas the potential evapotranspiration and temperature forcing uncertainties are disregarded. Another 
constraint is the precipitation uncertainty characterization. In this study, error characterizations of 
precipitation forcing in the DA system are merely multiplicative errors applied to precipitation fields. 
As rainfall uncertainty is the primary source of spread among ensembles, which is required for 
incorporating data from observations to correct model predictions, and precipitation fields may contain 
both magnitude and position errors, other statistically more reliable methods described in Section 2.2 
can be used. Despite the radar product being calibrated with observational rainfall data, it presents 
inaccuracies, and radar bias correction techniques can be applied. Correctly accounting for observation 
uncertainty in data assimilation is also a shortcoming of this study, as the observation uncertainty is 
assessed within a literature-suggested range, and an ad-hoc error selection method is employed. Other 
limitations include the errors associated with the model parameters, which are assumed to be ideal in 
this work. 

Lastly, the high computational time required to conduct the experiments is a significant 
shortcoming of this study. The high computational times could stem from the OpenDA assimilation tool 
itself, the fact that we work with a distributed model, and the filtering algorithm choice. While OpenDA 
is a very flexible and simple-to-configure tool, when used with wflow_sbm, it requires exceptionally 
long computing durations, which rise dramatically (up to 12 hours) in runs with a longer assimilation 
time (61 days), a greater number of ensembles (more than eight ensembles), and more discharge 
observation location’s data being assimilated (5 assimilation locations). Experiments with a 31-day 
assimilation window, a single assimilation location, and eight ensemble members necessitate 
considerable computational time (two to three hours) and capacity. This, together with the limited 
available time for this research, has reduced the number and duration of the DA experiments presented 
in this work. A more time-efficient tool must be developed to be utilized in operational forecasting for 
catchments that respond rapidly, such as the Geul, for which the DA was not performed in this study 
due to limitations of the model and data available.  

7.3 Conclusions  

The primary objective of this study was to investigate the effects of assimilating streamflow data 
in the model predictions in the Vecht river catchment. Thus, this work aimed to enhance the 
understanding of assimilation in other hydrological states of the wflow_sbm hydrological model. As 
several uncertainties are to be considered in the DA process, as elaborated throughout this study, this 
thesis included some preliminary analysis to account for the related uncertainties. Therefore, a 
precipitation data analysis was carried out for the selected gridded rainfall product (Radolan), comparing 
at points with the observational dataset to account for the model forcing uncertainty. Then, the ability 
of the model to capture the observed discharges by conducting historical simulation runs was 
investigated. However, the model parameter uncertainties were ignored, and the model was assumed 
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perfect when carrying out data assimilation experiments. Next, effects in the discharge predictions were 
reported, and finally, implications on other model states and whether the assimilation filter can capture 
a distributed hydrological model state dynamics were addressed. In the conclusion of this thesis, the 
research questions identified in Section 1.3 are revisited.     
 

- What is the effect of assimilating streamflow observations with the wflow_sbm distributed 
hydrological model on the streamflow predictions for the Vecht river using the EnKF? What is 
the influence of the assimilation window length and the number of assimilation locations?  
Results from this work indicate a positive effect on streamflow model predictions. However, the 
magnitude of improvement is sensitive to the error model selected for the experiments, and it 
varies depending on the amount of assimilated streamflow observations and the length of the 
assimilation window. By comparing the outcomes of experiment 1 and experiment 2, it can be 
concluded that assimilating observations near the outlet and other interior gauges will result in 
better discharge predictions in the entire catchment, while when assimilating only near the 
outlet, the EnKF application improves predictions only in a particular station, particularly in 
stations closer to the assimilation location, and stations where the wflow_sbm model follows 
the same trend (overpredicting or underpredicting flow peaks) as the assimilation station. For 
example, there is a 21.05% improvement in the model predictions at Emlichheim in the first 
experiment after DA. However, an adverse effect is noticed in other stations (e.g., Bilk, Ohne).  
The first experiment showed that the EnKF implementation does not solve the issue of a too 
steap rising limp and a peak flow predicted too early.  
In the second experiment, the predictions are improved with 3.82% (or 8 m3/s improvements in 
absolute error term) for the maximum flood peak. Therefore, it can be concluded that a longer 
assimilation window and assimilation of multiple observations will considerably improve the 
discharge predictions. However, this conclusion is derived from a limited number of 
experiments, and for quantitatively assessing the potential of the EnKF for broader applications, 
more investigations are needed. 

- What effect does discharge data assimilation have on other hydrological model states and fluxes, 
given that we use a model in which water is routed laterally via subsurface and surface water, 
whereas previous studies used a model in which water was routed only via surface water? 
From the results presented in section 6.3.4, it is concluded that the discharge DA effect, as 
expected, is reflected in all states that demonstrate a considerable correlation with the model 
discharges. The model is able to properly redistribute the water in the system when updating 
with the EnKF. Changes are noticed in the subsurface and overland flows corresponding to the 
theoretical flood response of the system, so for example, differences are detected during the 
flood peak time in the uppermost soil moisture layer of the model, while these differences are 
reflected in the deeper soil moisture layers later in time. Overall, it is concluded that the 
subsurface and surface water changes can be captured appropriately. However, assessing the 
effect on individual states at particular points is difficult, as we lack information on the actual 
values of various states.   

- What is the influence of the error model specification of the input forcing and observations on 
the discharge predictions with the wflow_sbm model? 
The outputs of the distributed hydrological model used in this work present a high sensitivity in 
the error model specifications chosen for the assimilation framework, as was noted in the 
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preliminary analysis carried out, where even for a 10% change in the uncertainty specification 
(particularly for precipitation), significant impact is noticed in the predicted flows. For this 
reason, an appropriate error selection of the precipitation uncertainty is crucial. In this work, the 
combination of uncertainties that produced the best results for both experiments is a 
precipitation error factor of 2.5 and a 0.1 factor for the observation error. However, as other 
uncertainties are neglected, these values need to be revised when including uncertainties related 
to the model parameters and initial conditions. The model might produce unrealistic flow 
predictions (and other variables) when compensating for the neglected errors.  

7.4 Recommendations 

During the production of this study, characteristics of suggestions for future research were 
identified, relating to the limitations and findings presented; as a result, the following recommendations 
for further research are presented: 

 
1. Given the lack of information on the "best" rainfall data source and given that the 

precipitation uncertainty propagates throughout the analysis, it is recommended that 
statistically more reliable techniques, like conditional simulation, are used to assess the 
precipitation error estimates. Additionally, before uncertainty assessment of the radar 
precipitation product, applying bias adjustment of the radar forcing data is considered 
appropriate.  

2. While a sensitivity analysis was done to investigate which combination of spatial correlation 
and uncertainties will result in the most optimal simulation with DA (the one that brings the 
ensemble closer to the observations), the values chosen for the spatial correlation of 
precipitation were based on literature suggestion. Therefore, an analysis of the spatial 
correlation structure of precipitation at the local scale should be conducted to obtain better 
results.  

3. The effect of consideration of other uncertainties, like the model structure uncertainty, 
initial condition uncertainty, etc., should be explored.  

4. More experiments with a larger assimilation window and additional assimilated gauges 
should be conducted to investigate DA's effects further. While performing those 
experiments with the current OpenDA version is computationally ineffective, further 
research should be conducted on how to produce results more effectively.  

5. Additional experiments with EnKF DA can be conducted to derive ensemble forecasts to 
be evaluated based on lead times, using the verification measures mentioned in Section 
2.3.2.  

6. In view of the estimated positive results of streamflow DA at the Vecht river catchment, it 
is recommended to develop a similar assimilation setup for the Geul river basin, following 
the work that is already carried out for the Geul in this study, as time and computational 
challenges did not allow for the implementation of additional DA experiments. A 
comparison of the effectiveness of EnKF DA for the two different catchments can then be 
made. Furthermore, for the Geul, other filtering algorithms like the Asynchronous Ensemble 
Kalman Filter (explained in section 2.1) are recommended to be explored, as it is a 
promising one regarding reduced assimilation time.  
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9 APPENDICES 

Appendix A. Streamflow gauge station locations  

A.1 Vecht  

 

Table 18: Overview of the streamflow gauge station in the Vecht river basin 
Map ID 1 2 3 4 5 6 7 

Station 
Name 

Emlichheim Wehr-
Neuenhaus 

Lage I Osterwald Gronau Ohne Bilk 

A.2 Geul  

 
Table 19: Overview of the streamflow gauge station in the Geul river basin 

Map ID 1 2 3 4 5 

Station 
Name 

Meerssen Schin op Geul Eyserbeek Eys Selzerbeek
Partij 

Selzerbeek, 
molentak 

Map ID 6 7 8 9 10 

Station 
Name 

Gulp, 
Azijnfabrik 

Hommerich Cottessen Sippenake
n 

Kelmis 
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Appendix B. Precipitation data analysis 

B.1 DWD rain gauge observations VS E-OBS gridded dataset  
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B.2 Radolan vs EOBS 

Station ID 357 
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Station ID 1223 

 

   

Station ID 1230 
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 Station ID 3640 

 

     

Station ID 5131 
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Station ID 4667 

 

   

 

Station ID 15927 
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B.3 Annual max and mean precipitation  
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Appendix C. Simulations with DA  

C.1 Sensitivity analysis of the simulations with DA, for a run with 8 ensemble members, with 
different values of uncertainties for forcing and observations 

Spatial correlation 

10 000 m 30 000 m 

Forcing 0.5 

Qobs 0.1 

  

Qobs 0.05 

  

Qobs 0.01 

  

Qobs 0.005 

  

Qobs 0.001 
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Forcing 0.1 

Qobs 0.1 

  

Qobs 0.05 

  

Qobs 0.01 

  

Qobs 0.005 

  

Qobs 0.001 
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Forcing 1 
Qobs 0.001 

  

Qobs 0.01 

  

Qobs 0.1 
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C.2 Discharge prediction results with DA in different station locations – experiment 1 

River station – Bilk  

 

River station – Gronau 

 

River station – LageI 
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River station – Ohne 

 

River station – Osterwald 

 

River Station – Wehr Neuenhaus 
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C.3 Discharge prediction results with DA in different station locations – experiment 2 

River station – Bilk  

 

River station – Lage1 

 

River station – Ohne 

 


