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Abstract

Extreme hydrological events have become more frequent, as evidenced by the European floods
of July 2021, which affected the southern provinces of the Netherlands. The need for improved discharge
predictions to be used in operational water management to avoid potential adverse effects of flooding
has encouraged researchers to employ several ways to improve hydrological model estimates, including
data assimilation. This thesis explores the data assimilation effects in the discharge predictions of the
wflow _sbm distributed hydrological model of the Vecht river basin. Additionally, effects on other
hydrological states and fluxes like subsurface flow, saturated water depth, and soil moisture were
explored spatially.

This work presents a methodology for applying data assimilation in a model where water is
routed from the surface and subsurface. In contrast, previous studies used a model in which water is
routed only via surface water. Ensemble Kalman Filter is used to update the model’s discharge
predictions by assimilating external discharge observations. This methodology also explores how the
data assimilation effect is influenced by the uncertainty characterization considered in the assimilation
framework and other factors like the length of the assimilation window and the number of assimilation
locations. A preliminary study of the rainfall data is performed to determine the uncertainties of the
chosen rainfall product. A benchmark simulation scenario is then selected after the review of
deterministic and ensemble model predictions. Finally, data assimilation experiments are developed
after discussing the characterization of the uncertainty model.

The results of the model output analysis indicate that streamflow assimilation typically has a
positive effect on improving model discharge estimations. Additionally, the Ensemble Kalman Filter
update effectively captures the system’s spatial state dynamics for subsurface states and fluxes, such as
saturated water depth, soil moisture, etc. Two alternative experimental setups with different assimilation
intervals and numbers of assimilated observations are examined concerning how this effect varies over
other flow gauge locations. As demonstrated by both experiments, longer assimilation times give better
results, with the assimilation effect significantly improving in the final timesteps of the
assimilation frame. Furthermore, it is concluded that assimilation of observations near the outlet and
interior gauges will improve discharge predictions, whereas assimilation of observations only near the
outlet will only improve discharge predictions at a number of stations, typically those that are closer to
the assimilation location and those where the wflow sbm model exhibits the same trend as the
assimilation station. An uncertainty factor of 2.5 for the precipitation error and 0.1 for the observation
error yielded the best results for both experiments.

However, this study has several limitations, including assumptions of a perfect model and initial
conditions; the way the precipitation and observations error model was derived. As a result, the model
gives unrealistic discharge predictions when compensating for the neglected errors. Additionally, a
limited number of experiments due to the extensive computational times, attributed to the combination
of the OpenDA tool with the distributed model, and the algorithm choice, does not allow the DA impact
on the discharge predictions to be judged accurately.

Therefore, the final section of this study provides recommendations for future research,
suggesting additional experiments with longer assimilation windows; analysis of the spatial correlation
structure of precipitation, the use of more statistically reliable techniques to assess the precipitation
uncertainties; consideration of the model parameter and initial conditions uncertainty; etc.
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Izvlecek:

Ekstremni hidroloski dogodki so postali vse pogoste;jsi, kar dokazujejo evropske poplave julija
2021, ki so prizadele juzne nizozemske province. Potreba po izboljsanih napovedih izpustov, ki se
uporabljajo pri operativnem upravljanju voda, da bi se izognili morebitnim $kodljivim u¢inkom poplav,
je spodbudila raziskovalce k uporabi ve¢ nacinov za izboljSanje ocen hidroloskih modelov, vklju¢no z
asimilacijo podatkov. Diplomsko delo raziskuje ucinke asimilacije podatkov pri napovedih pretoka
porazdeljenega hidroloskega modela wflow sbm pore¢ja reke Vecht. Poleg tega so bili prostorsko
raziskani ucinki na druga hidroloska stanja in tokove, kot so podzemni tok, globina nasi¢ene vode in
vlaznost tal.

To delo predstavlja metodologijo za uporabo asimilacije podatkov v modelu, kjer je voda
usmerjena s povrsine in pod povrs§ino. V nasprotju s tem so prej$nje Studije uporabile model, v katerem
je voda speljana le po povrsinski vodi. Ensemble Kalmanov filter se uporablja za posodobitev napovedi
izpustov modela z asimilacijo zunanjih opazovanj izpustov. Ta metodologija raziskuje tudi, kako na
ucinek asimilacije podatkov vpliva karakterizacija negotovosti, upostevana v asimilacijskem okviru, in
drugi dejavniki, kot sta dolzina asimilacijskega okna in Stevilo asimilacijskih lokacij. Izvede se
predhodna S$tudija podatkov o padavinah, da se dolocijo negotovosti izbranega produkta padavin. Po
pregledu napovedi deterministi¢nih in ansambelskih modelov se nato izbere primerjalni simulacijski
scenarij. Po razpravi o karakterizaciji modela negotovosti so razviti poskusi asimilacije podatkov.

Rezultati analize rezultatov modela kazejo, da ima asimilacija toka obicajno pozitiven
ucinek na izboljSanje ocen pretoka modela. Poleg tega posodobitev filtra Ensemble Kalman
ucinkovito zajame dinamiko prostorskega stanja sistema za stanja in tokove pod povrsino, kot
so globina nasi¢ene vode, vlaznost tal itd. Dve alternativni eksperimentalni nastavitvi z
razli¢nimi intervali asimilacije in Stevilom asimiliranih opazovanj sta preuceni glede tega, kako
ta ucinek razlikuje glede na druge lokacije merilnika pretoka. Kot sta dokazala oba poskusa, dajejo daljsi
Casi asimilacije boljSe rezultate, pri ¢emer se ucinek asimilacije znatno izboljsa v kon¢nih ¢asovnih
korakih okvira asimilacije. Poleg tega je ugotovljeno, da bo asimilacija opazovanj v blizini izpusta in
notranjih merilnikov izboljsala napovedi pretoka, medtem ko bo asimilacija opazovanj samo v blizini
iztoka izboljSala le napovedi pretoka na Stevilnih postajah, obicajno tistih, ki so blizje lokaciji
asimilacije, in tistih kjer model wflow sbm kaze enak trend kot asimilacijska postaja. Faktor negotovosti
2,5 za napako padavin in 0,1 za napako opazovanja je dal najboljse rezultate za oba poskusa.

Vendar ima ta $tudija ve¢ omejitev, vkljuéno s predpostavkami o popolnem modelu in za¢etnih
pogojih; nacin, kako je bil izpeljan model napak padavin in opazovanj. Posledi¢no daje model nerealne
napovedi praznjenja pri kompenzaciji zanemarjenih napak. Poleg tega omejeno Stevilo poskusov zaradi
obseznih racunskih €asov, pripisanih kombinaciji orodja OpenDA s porazdeljenim modelom, in izbire
algoritma ne omogoc¢a natan¢ne ocene vpliva DA na napovedi praznjenja.

Zato zadnji del te Studije podaja priporocila za prihodnje raziskave in predlaga dodatne poskuse
z daljSimi asimilacijskimi okni; analiza prostorske korelacijske strukture padavin, uporaba statisti¢no
zanesljivejSih tehnik za ocenjevanje padavinske negotovosti; upoStevanje negotovosti parametrov
modela in zacetnih pogojev; itd.
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1 INTRODUCTION

Accurate and reliable discharge predictions have proven challenging in operational hydrology. The
recent floods of July 2021 in Europe, especially in the province of Limburg, highlighted the necessity
for improved flood forecasting quality and accuracy.

The primary purpose of data assimilation is to predict a system's correct state. For example, a state of
interest in operational hydrology can vary from river discharges, which can then be translated into water
levels, to other fluxes and states such as subsurface water flow, soil moisture, saturated water depth, and
so on, based on the objective of the study. Given that a hydrological model aims to predict such states
based on physical and mathematical relationships assigned to each model, one can question why data
assimilation is used. In fact, models are unable to make realistic state estimates, as they are prone to a
wide range of errors, which could stem from various sources, including structural errors caused by
assumptions and approximations made for the physical and numerical relations between system
components, uncertainties of the model input (e.g., imperfect forcing data), model parameters and so
on.

While it is possible to monitor states through ground-based observations or remote sensing, this may
not be enough to capture all states of our interest. States with a high degree of spatial and temporal
variability cannot be scaled spatially accurately from point observations, as in the case of precipitation
upscaling from rain gauge point observations. On the other hand, satellite data can provide global
coverage. Still, in practice, it is not always the case when the observations provide direct information
for our state of interest, as with river discharge, where a hydrological model is applied to convert
precipitation data into flows.

Data assimilation (from now on, referred to as DA), by observation merging with model predictions,
can produce state estimates with a good prediction accuracy and uncertainty quantification (Liu and
Gupta 2007a). The correct initial conditions for a future forecast are obtained by updating the model
states with external measurements (Rakovec, Weerts, et al., 2012). The uncertainty inherent to the new
estimates is intended to be lower than that associated with the model forecasts or observations alone.
Different DA techniques have been developed and are widely used in hydrological forecasting, including
approaches like interpolation (e.g., optimal interpolation), filtering (e.g., the Classic, Extended, and
Ensemble Kalman Filter), and smoothing (4DVar, Ensemble Kalman Smoother) algorithms. The
majority of operational hydrological forecasting systems now use lumped models (with manual or
deterministic state updates). However, a substantial shift toward distributed models with hydrological
ensemble predictions is noticed, as they present more flexibility in terms of how uncertainty is accounted
for (Liu et al., 2012).

1.1 Motivation

The main motivation for this research is to see the potential impact and uses of a better forecasting
model could have. This study will focus on data assimilation (DA) effects on distributed hydrological
model states and fluxes (e.g., wflow_sbm). The primary advantage of applying data assimilation
techniques with distributed models lies in the potential of such models to be forced using spatially
observed data, which are now widely accessible due to remote sensing and radar applications. Moreover,
distributed model states provide a better representation of the model states, resembling actual
observations within the catchment (e.g., subsurface water flow, soil moisture, and discharges) more than
the lumped states over the entire catchment. (Rakovec, Weerts, et al., 2012). A data assimilation
application technique using spatially distributed models, as recommended by Liu et al. (2012), is tested
in two selected small-scale experiments, using the Ensemble Kalman Filter for assimilating the
observations.



2 Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model:
A case study of the Overijsselse Vecht river.
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management.

1.2 Objectives

This study’s main objective is to use assimilation of the discharge observations with a distributed
hydrological model (wflow_sbm) to derive better quality forecasting and increased accuracy for a flood-
prone area (River Vecht). It is necessary to complete the following specific objectives to attain the
overall goal:

- Assess the effect of streamflow assimilation on discharge prediction quality for the Vecht river.

- Estimate the effect of applying DA on hydrological model states and fluxes using a model where

water is routed via surface and subsurface.

- Examine the influence of uncertainty selection on the discharge prediction quality for the Vecht

river.

1.3  Research questions

The primary research goal of this study is to examine the effects of data assimilation in enhancing
model flow predictions when used with a distributed model. For this objective to be accomplished, the
following research questions are identified and addressed in this work:

- What is the effect of assimilating streamflow observations with the wflow sbm distributed
hydrological model on the streamflow predictions for the Vecht river using the EnKF? What is
the influence of the assimilation window length and the number of assimilation locations?

- What effect does discharge data assimilation have on other hydrological model states and fluxes,
given that we use a model in which water is routed laterally via subsurface and surface water,
whereas previous studies used a model in which water was routed only via surface water?

- What is the influence of the error model specification of the input forcing and observations on
the discharge predictions with the wflow_sbm model?

1.4 Practical value and innovation

Extensive research on the assimilation of discharge measurements into lumped hydrological
models has been reported, e.g., Weerts and El Serafy (2006). Additionally, several studies have
examined DA applications within spatially distributed hydrological models, considering conceptual and
operational aspects (e.g., Rakovec et al. 2012). This work assesses DA techniques applied to the
wflow sbm distributed hydrological model using computationally effective algorithms. However, only
a few studies utilizing DA with distributed hydrological models have been reported, like the wflow sbm,
where the water is laterally routed through subsurface and surface water. In contrast, previous studies
on DA with distributed models only used models that only routed water through surface water.

In light of the floods in Europe in July 2021, improved discharge predictions may facilitate better
flood forecasting and decision-making. Predictions of discharge may alert water officials to impending
high water levels, allowing them time to take quick action, monitor the situation, and potentially prevent
severe consequences. In addition, if the research findings demonstrate that the employment of DA with
the wflow sbm model considerably improves the quality and accuracy of discharge prediction, the
method employed in this study may become a suitable alternative. The model used in this work
(wflow_sbm), together with the assimilation tool OpenDA is open source, so if no restrictions on the
data availability are encountered, it can be applied to other river basins. This work is relevant to
hydrologists, water experts, decision-makers, and other fields related to operational hydrology.
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1.5 Operational flood forecasting in the Netherlands

The river Vecht is a completely rain-fed catchment as it depends on precipitation. As it is a
transboundary river flowing from Germany to the Netherlands, many stakeholders engaged in the water
management issues of the river, resulting in it lacking an operational forecasting system until 2011,
when with the help of the Delft-FEWS system, it was finally built. Delf-FEWS is a data model
integration platform that collects real-time fluvial and meteorological observations. HBV-96, a spatially
lumped rainfall-runoff model, has been operationally running since 2012 to forecast floods in the Vecht
river. The system can forecast five days using a 5-day ECMWF ensemble forecast (Heerinen et al.,
2013).

While the forecasting system has proved successful in multiple small flood occasions, in the
context of a changing climate and advances in hydrological models and operational hydrology in
general, it is sensible to develop and evaluate more effective ways of forecasting in the area. The
operational forecasts generated from the HBV-96 model are employed as lateral inputs into the 1D
hydrodynamic model (Sobek). The HBV-96 model does not use discharge assimilation for sequential
model state updating; instead, an automated auto-regressive error correction approach is used to update
the model with discharge measurements. The application of this automatic error correction is analogous
to what is described in the work of Broersen and Weerts (2005) for the Rhine catchment. Like the Vecht
river forecasting system, the operational forecasting for the Geul is derived using a lumped HBV-96 and
a hydrodynamic 1D Sobek model. As it is a small steep catchment fed from precipitation, with quick
response and a time skill of just several hours, it is currently aimed by the water authorities to establish
a nowcasting system to avert future flooding as severe as July 2021.

The research presented in this thesis explores discharge data assimilation for state updating with
wflow_sbm that can be used to derive an updated forecasting system for Vecht.
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2 LITERATURE REVIEW

This chapter reports the state-of-the-art on data assimilation and various verification methods for
deterministic and ensemble forecast evaluation. First, a general overview of the theoretical backgrounds
of data assimilation algorithms, focusing on the Ensemble Kalman Filter (EnKF), is given. Finally, some
remarks on the OpenDA toolbox and some details on its applications with hydrological models are
presented.

2.1 Data assimilation concepts and methods

Data assimilation is defined as "the process of employing observational data to update a model"
(WMO, 1992). Data assimilation is often regarded as the way of maintaining a model "on track" by
continuously adjusting it with new observations (University of Reading, 2022).

The main ways to update a model are as follows:
- Input update: forcing data errors are corrected using observation-based forcing, resulting in
improved model predictions.
- State update: model states are corrected to get closer to observational data.
- Parameter estimate: model parameters are corrected using observations (e.g., calibration).
- Error correction: model simulations are corrected with a long-term experimental error to
diminish systemic model bias (e.g., bias correction).
In hydrology, DA techniques can be sequential or variational. Sequential approaches are typically used
for state update of a hydrological model by assimilating external observations as they become available
at each time step. Their impacts reflect the observational data and model states' uncertainties. Variational
approaches aim to optimize a cost function throughout an experiment's duration. The initial construction
of a first-guess model is followed by developing an adjoint model that propagates in time and integrates
model-observation misfit (Rakovec, Weerts, et al., 2012).

Optimal interpolation (OI), also known as statistical interpolation, is one of the most used
static approaches in DA, as it is a reasonably simple method. OI is a minimum variance estimator that
determines the optimal solution based on weighted least squares fit observations and a first-guess
simulation (Lorenc 1981). However, the term "optimal" is misleading, as it is challenging to specify
error covariances accurately in practice.

The 3-D variational (3D-Var) method directly solves the recurrent optimization problem,
as observations are retrieved at the analysis time, thereby requiring less extensive processing
capabilities. The background covariance matrix is typically approximated using the same method as OI.

The 4-D variational (4D-Var) is an upgrade of the 3-D variational (3D-Var) system wherein

observations are assimilated at the exact time they are measured. Within the assimilation window, this
assimilation algorithm computes the initial condition in which the prediction most closely reflects the
observations. Both methods determine the optimal guess at the time of analysis by optimizing a cost
function, which narrows the distance between measurements and a model’s forecasted track.
In contrast to OI, variational assimilation approaches (3D-Var, 4D-Var) allow greater flexibility for
assimilating multiple variables with a nonlinear relationship to the model, accommodate a large number
of observations, and provide a solution for the entire system without dividing it. In addition, they
establish the foundation for adopting more complex background-error covariance models (Weaver,
2003). On the downside, the 4D-Var method assumes a perfect model and assigns equal weight to older
and more recent observations at the start and end of the assimilation interval.

The Kalman Filter, developed on Kalman's (1960) work on optimum control of linear systems,
is a popular sequential algorithm for data assimilation. It is a discrete, recursive algorithm for state
estimation that optimizes mean squared error. The dynamic update of the predicted (background) error
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covariance over time defines the Kalman filters from more static algorithms such as OI. The classic
Kalman filter (KF) employs a standard error propagation theory and a linear tangent model. As
mentioned in Liu et al. (2012), referring to Liu and Gupta (2007), the generic dynamic state-space update
can be summarized as below:

K41 = Mipr (X, 0, Uge41) + Miesr (1)

Zpp1 = Hk+1{xk+1r3) + &y (2)

where x;, and X, are the system's true state vectors at the time ¢, and t; ., respectively; My, is a
nonlinear operator representing the system propagation from time t; to t;,, responding to the input
vector of the model uy,1; 6 consists of a time-invariant model parameter vector that is derived from
physical concepts or calibration of parameters; z;,; is the observation vector referring to model
properties and states through the use of an observation operator Hyq; 141 1S the term used for the
model error with mean 7, , , and a covariance Qy1; the observation uncertainty is represented as €4

with a mean €, ; and covariance Ry, 1.

The prediction (forecast) and update steps are the two main components of the KF algorithm.
The algorithm's prediction step uses the initial estimates for the state and the error covariance. The
results of the prediction step are integrated with measurement data in the update step to create an updated
state estimate, which is then used to initialize the subsequent prediction, which will then be utilized in
the following update. Figure 1 presents the equations and steps of the KF algorithm are presented.

> Measurement Update (Correction Step)

1-Kalman gain computation
Kis1 = Pl HEyy (Heo i PL HE + Ry ™
Time Update (Prediction Step) 2-Estimate update with measurement
X1 = X{H + K1 (Zer1 — Hk+lx£+1)
1-Project the state
x r{ by = My ixf 3-Error covariance update

P, =(1- Kk+1Hk+1)PkJ.r+1)
2-Project the error covariance
Pl = My i PEM, ) + Qias

T

Initial system state estimates &
error covariance

xf, Pi at previous corrected step,

xg, Ppatt, =0

Figure 1: Classic Kalman Filter Algorithm
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M and H operators are assumed linear in the Kalman Filter (KF); yet, hydrological systems are
typically nonlinear, restricting the application of KF. Variations of the KF method to provide
approximated solutions for non-linear situations like the extended Kalman Filter (EKF), Ensemble
Kalman Filter (EnKF), etc., have been developed.

A nonlinear variation of the KF is the Extended Kalman Filter (EKF). However, in the case
of EKF, local tangent linear formulations of the model and observation operators (M and H) are applied.
Despite specific successful uses of the EKF, as cited in Liu and Gupta (2007), Evensen (1994)
considered that the EKF can lead to instability or even divergence since it disregards the model's second
and higher-order derivatives.

Evensen (1994) proposed the Ensemble Kalman Filter (EnKF) as a substitute for the EKF and
has since become the most widespread DA technique in hydrology because of its simple conceptual
formulation and robustness when used with DA applications (Liu et al., 2012). It is a Bayesian recursive
estimation approach that uses observations to assess model states' proper probability density function.
Several state forecast ensembles are employed rather than a single discrete estimate of
covariances. Adding observation perturbations is critical in EnKF to avoid ensemble members
collapsing.

The Asynchronous Ensemble Kalman Filter (AEnKF) is developed from the adaptation of
the (synchronous) Ensemble Kalman Filter (EnKF) using a data-driven state updating method. The
AEnKF incorporates all measurements in a single update and uses a longer assimilation window. The
AEnKEF is attractive for operational application since additional measurements can be used with little
added computation time. Rakovec (2015) examined the benefit of an extended assimilation window in
his work.

di s ds dy Time
EnKF: >
i
[
5 |
Updates >
| SES
v
d, dy ds dy Time
AEnKF: l -
y 3
Updates o
\

Figure 2: Diagram of the model update differences between the EnKF and the AEnKF (Rakovec et al.,
2015)

2.2 Uncertainty definition

While there are recommendations and methodologies for characterizing model
prediction uncertainties in the literature, selecting the optimal model error remains challenging in most
DA applications. To prevent the filter from failing, arbitrary model uncertainty is typically defined.
Inconsistent data coverage, observation errors, improper DA structure, and model initialization are
among the sources of DA uncertainties.
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The accuracy of error estimates of the model input forcing and flaws in the model structure
because of parameterization of physical phenomena or unaddressed scaling issues influence
how efficient the DA approach is (Liu et al., 2012). Furthermore, an assumed perfect model structure
does not guarantee a perfect prediction, as the model parameter estimates could also be uncertain. As a
result, the effectiveness of a DA scheme is highly influenced by the quality of the input and model
uncertainty estimates, the accurate representation of the dependencies between model parameters, etc.

In hydrology and operational water management, it is essential to quantify precipitation
accurately in terms of its intensity and location. Given the small temporal and spatial correlation scales,
precipitation is thought to be the most uncertain input for hydrologic models. Traditionally, spatial
precipitation data is retrieved from rain gauge recordings based on estimates at the point scale. Yet, the
application of weather radars at increasing scales over recent times has enhanced the knowledge of
precipitation patterns. Radar precipitation estimates are prone to error, resulting in the need for
operational nowcasting/forecasting systems to employ rain gauge data for minimizing errors in radar
QPEs, e.g., as in the Radolan product (after Kreklow et al. 2019). Considering the strong influence of
precipitation uncertainties on the model predictions, reliable estimates of these uncertainties are essential
for optimal DA applications. Recent advancements in radar performance and rainfall uncertainty
estimation are described by Van de Beek et al. (2010) and other authors.

Stochastic perturbations are typically employed to quantify precipitation uncertainty in DA
applications (Weerts & el Serafy, 2006). A stochastic perturbation approach typically determines the
size of precipitation error noise primarily by considering the precipitation scale. For instance, the
standard deviation of precipitation errors is considered equal to fifty percent of the rainfall at each model
time step (e.g., Reichle et al. 2002).

As precipitation estimates errors present a high spatial and temporal variation, such order-of-
scale-based approaches might lack statistical validity. Therefore, the estimates derived from conditional
simulation techniques will be more appropriate as they are statistically more reliable. However,
conditional simulation techniques may necessitate additional data parametrization and be
computationally inefficient and costly compared to ad hoc stochastic perturbations (Liu et al., 2012).

Model conceptualizations and mathematical structures are accountable for the model's inherent
uncertainty. Model error quantification is challenging due to its complex nature, highly dependent on
the interactions between the model's various sources of uncertainty. As referred in Rakovec (2014),
according to Liu et al. (2012), the hydrological community has adopted the following four methods to
measure model error:

(1) stochastic perturbation of the model states analogous to stochastic perturbation of
precipitation (e.g., Reichle et al. 2002).

(2) inverse techniques for deriving probability distribution functions of the model parameters
(e.g., Vrugt et al., 2003).

In inverse approaches, model parameters and initial conditions and assumed to be perfect. Thus,
unrealistic values might be assigned to model variables to compensate for model parameters and initial
conditions errors.

(3) synchronous model states and parameters updating and uncertainty quantification in a

sequential or recursive DA system (e.g., Vrugt et al., 2005).
The real-time update of model state and parameter values in this method enables the model to correctly
simulate the system response at each observation time, depending on the applied updating method (e.g.,
linear update in EnKF vs. sequential Bayesian update and resampling in particle filtering). Numerous
uses of these techniques for river discharge prediction, soil moisture, other state estimation, groundwater
flow modeling, etc., have been documented.

(4) multi-model ensembles application (e.g. Georgakakos et al., 2004).

This stochastic perturbation approach accounts for the model uncertainty term 71,4 (See equation 1) by
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adding perturbations to the model physics, alternative methods account for the model uncertainty by
quantifying model parameter errors.

2.3  Verification methods

The hydrological model prediction performance is assessed by different verification methods, most
commonly using the differences between the predicted and observed variables. A plethora of verification
methods are available for both deterministic and probabilistic forecasts, including scatter plots, error
measures, and skill scores. Some popular verification methods for evaluating DA effectiveness are
summarized in this section. While deterministic verification methods (e.g., RMSE, ME, etc.) evaluate
an ensemble's mean using a single observation, probabilistic methods (e.g., CRPSS) evaluate the entire
ensemble using a single observation. In this work, deterministic and probabilistic simulations are used.
However, deterministic verification methods are used to evaluate the model predictions in each case (for
the probabilistic simulations, the ensemble mean is used).

2.3.1 Performance verification of deterministic forecasts

For performance evaluation of deterministic predictions, metrics like the Root Mean Square
Error (RMSE), Percent Bias (pBIAS), Nash-Sutcliffe Efficiency (NSE), Kling-Gupta Efficiency (KGE),
etc. are commonly used.

The Root Mean Square Error (RMSE) is an accuracy metric used to evaluate a model's

performance compared to observed values. It is calculated using equation (3) as below:

RMSE = 1y (v - v)’ 6

RMSE is a commonly used indicator that provides an idea about the error distribution and determines
whether the model is over or under-predicting. It certainly has several drawbacks, like being scale-
dependent; hence it should only be used to evaluate methods within the same dataset and not between
scales (Hyndman & Koehler, 2006). As it allocates higher weights to errors of higher values, it is also
more sensitive to outliers. RMSE ranges from zero to infinite, with 0 being the ideal value, and it
employs the same units as the compared variables.

The Percent Bias (P bias) is a mathematical relationship between the mean error and the
average observed value. It indicates whether the simulated values are more or less likely to be greater
or smaller than the observation values. The Pbias is computed using the following equation:

pBIAS = 4)

?:1(1’1'0—‘@'5)*100]
i Y

P bias has a range of infinite negative to infinite positive values, with P bias = 0 being the optimal value.
A positive P bias value suggests the observed values being overestimated compared to the simulated
values, whereas a negative P bias value indicates underestimation.

Nash-Sutcliffe Efficiency (NSE) is a metric typically used to assess hydrological models'
predictive quality. It indicates how well predictions compare to the mean of the data and is computed
using the formula as follows:

S (-1

NSE =1— |—/—F—+t———
S (e

)



Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model:
A case study of the Overijsselse Vecht river. 9
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management.

This dimensionless indicator ranges from 1 to infinite negative values, with NSE = 1 being the ideal
value and NSE = 0 indicating that the model's performance is the same as if the observed mean values
were used as the predictive model.

In equations (3), (4), and (5), Y;? are the observed values, Y;° the simulated values, while n refers to the
number of observations.

Kling Gupta Efficiency (KGE) is an improved variant of the NSE that considers several types
of model errors like correlation, bias, and variability. It is typically employed for hydrological model
calibration and evaluation. See Gupta et al. (2009) for a thorough description of KGE and its advantages
over NSE. There are three main components included in the computation of the KGE index, as shown
in the equation below:

KGE =1—/(C.—1)2 + (¢ — 1)2 + (B — 1)2
(6)

c 4 )
OysOyo Oyo Uyo

_ Covysyo q = Oys , _ Hys

where C, is the Pearson correlation coefficient, with an ideal value of C.=1, computed as the ratio of
covariance between simulated and observed values Covysyo with the respective standard deviation of
the simulation gys and observation gyo values; a is the ratio between the standard deviation of the
simulated values gys and the standard deviation of the observed ones gyo, with the ideal value being a
=1; and S represents the ratio between the mean of the simulated values pys and the mean of the
observed ones pyo ideally with a value of § =1. The optimal KGE indicator will have a value of 1 for
the three components, varying from one to negative infinite.

Nash and Sutcliffe's coefficient of determination R? (1970) can be used to assess how a DA
technique improves a hydrological prediction. While it is identical to the NSE, their key distinction lies
in their application, as R2 is particularly favorable when applied to the ensemble mean. R? is a metric
of a statistical model’s goodness of fit and is computed as follows:

R2 = (1 _ MSEassimilation) % 100 7

MSE geterministic

where the Mean Square Error (MSE) is computed as:
1
MSE = ~ 3L (Y — Y{)? (®)

Where MSE gsimitation denotes the mean square error between the ensemble mean and the respective
observations after updating with DA, and MSE joterministic 15 the mean square error between the
deterministic simulation (without DA) and the observations. Positive 12 values imply that the data
assimilation is beneficial for forecasting, whereas negative r2 values suggest a negative effect.

2.3.2 Performance verification of ensemble forecasts

The Continuous Rank Probability Score (CRPS) (Brown, 1974; Hersbach, 2000) is a widely used
accuracy statistic for ensemble forecasts. Unlike other scores, it compares the cumulative distribution
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functions of ensembles and observations. It is defined by the integration of the squared differences
between the cumulative density probability functions (cdfs) of the forecasted and observed as follows:

CRPS =¥, [%2 (F/° (x) — PP (x))?dx )

where Pl.f “(x) and PP (x) are the i-th ensemble member probability cdf, and the observation’s cdf,
respectively. As the observation is a single value, the forecast probability of observations is expressed
as a step function ranging from 0 to 1. The unit dimensions of CRPS are the same as the observations.
The optimal value of CRPS is zero when the ensemble’s cdf equals the observation’s cdf.

Skill scores are a common way of evaluating a forecast. A skill score determines the accuracy
of the forecast by measuring its relative distance to a reference forecast. The following is the general
equation used to calculate forecasting abilities:

SCOT‘eref—SCOTEf

Skill = Sre = (10)

CRPSS — CRPSrer=CRPSy (11)
CRPSyef

RMSES — FMSEres—RMSEy (12)
RMSEyf

where Scores represents the quality of the ensemble forecasts (calculated using one of the statistics,
e.g., RMSE, CRPS) and Score,f is the verification score of the reference forecast. A perfect score is

the value of 1 and no skill for the value of 0.
2.4 OpenDA

OpenDA is an open-source generic toolbox used in data assimilation applications, which includes a set
of configuration files that define interactions between models, data assimilation algorithms, and
observations (OpenDA, 2013). Its modular design supports flexible applications for geophysical process
modeling. For example, in hydrology, DA methods can enhance real-time forecasts, calibrate uncertain
model parameters, perform uncertainty analysis, and so on.

The three major building blocks of OpenDA are presented in Figure 3, where the method
describes the DA (or calibration) algorithm, e.g., 3DVar, EnKF, AEnKF algorithms, etc.; the
observations include the stochastic observer for handling the observations, and lastly, the DA algorithm
is applied to the model, which in this case is the wflow_sbm model. Still, it can be any external model
compatible to the OpenDA (van Velzen et al., 2016).
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Observations

Figure 3: Modular components of OpenDA: method (the DA method), observations (the stochastic
observer for processing the observations), and the model (van Velzen et al., 2016)

The model delivers a deterministic run to OpenDA, which can integrate the deterministic model run
with the observations in the chosen algorithm to generate the desired output.

OpenDA brings several advantages, including a clear modular framework in which the model,
observations, and algorithm are distinct and can be easily configured using an XML schema, from which
the user can control the type of algorithm to be used and its settings, like the number of ensemble
members; the observations to be assimilated and their relative grid placement inside the model, as well
as the error associated with the forcing input, the measurements, and the model itself.

Another benefit is OpenDA’s versatility in formats that the observations can be stored (NetCDF, CSV,
NOOS, SQL database), and the outputs can be produced (NetCDF, ASCII, Matlab, Python, etc.). A
significant downside of OpenDA is its lengthy computing times, the simulation's tendency to fail when
longer assimilation windows are employed, and, in my personal experience, the inability to store results
when the simulation is run over multiple dates (e.g., simulation starts on 25th of July and ends 26th of
July). Using the so-called black box coupling and a model wrapper, OpenDA and the model can be
incorporated as a module in the Delft-FEWS.
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3 CATCHMENT DESCRIPTION

Experiments will be conducted for the Geul river catchment (Figure 4), which drains an area of
approximately 340 km?2 and is located partially in Belgium, the Netherlands, and Germany (52 percent,
42 percent, and 6 percent, respectively), as well as the Overijsselse Vecht river catchment (Figure 5),
which drains a significantly larger area of approximately 1,800 km?2. Significant elevation changes in
the Geul, a rather steep, primarily rain-fed catchment, result in rapidly changing discharges, whereas the
Vecht catchment has a slower reaction due to a distinct soil formation and primarily to more minor
elevation differences.

Table 1: General characteristics of the Geul and Vecht river catchments

Geul Vecht!
(Latitude, longitude) (50 80N, 0591 E) (52 17N, 07 14 E)
Upstream area [km2] 344 1980
Annual precipitation [mm]: 800 730
Predominant land use agricultural area grassland
Predominant soil type coarse-silty loamy sand
Altitude 379-564 m a.s.l. -3-167m a.s.l.

3.1 Geul river basin

A tributary of the River Meuse, the Geul river is located in South Limburg, the most southern
region of the Netherlands (Figure 4). Originating in the Lichtenbusch region, in northeastern Belgium,
near the German border, south of Aachen, it enters the Netherlands at Cotessen in the Vaals
municipality. It has a total length of fifty-six kilometers and a catchment area of 380 square kilometers.
It is among the few hilly rivers in the region and has a very steep gradient, with the catchment's altitude
decreasing from 400 m a.s.l at the source area to 50 m a.s.l where it joins the Meuse River, north of the
city of Maastricht.

The gradient range drops from 0.02 m/m close to the source to 0.0015 m/m at the outflow (de
Moor et al., 2008). Gulp, Eyserbeek and Selzerbeek are the three tributaries of the Geul. According to
the Koppen climate classification system, the climate can be described as Cfb, which indicates a
continental climate with warm summers but no dry spells. An average discharge of 4 m3/s characterizes
it, varying from 0.8 to 65 m?/s respectively during summer and winter storms, and an annual average
rainfall of 800 mm, ranging from 45 mm to 75 mm respectively in March and August (Dautrebande et
al., 2000). During the past 50 years, the population more than doubled, urbanization was rapid, the river
was straightened, riverbanks were protected to prevent erosion, land use was changed, and heavy
agricultural machinery was introduced. All these aspects may have contributed to a change in the
hydrological regime of the catchment, resulting in higher peak flows.

To reduce peak discharges, measures like “making room for the river” to meander, construction
of water retention basins, repurposing areas that would be flooded during flood events into nature
reserves, etc., were implemented after a severe flood event in the Meuse, at the turn of the twentieth
century. Today, the river is partially confined (a few short stretches that flow through villages) and
partially meandering (van den Munckhof, 2020). The Geul river basin is fed by surface, subsoil, and
groundwater flow together. The river's baseflow is controlled by springs formed from groundwater
recharge by rainfall traveling laterally through impervious layers to the surface, making Geul a mainly

! The statistics refer to the Dutch part of the Vecht river
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rain-fed river, where the discharges can change rapidly. Recurring local floods happen with peak
discharges as low as forty m3/s; however, the damage is limited to a few submerged meadows along the
river.

Typically, rainfall intensity is low, although this is changing due to climate and land use changes.
Summer rainfall is becoming more intense and concentrated, and torrential rainfall can cause overland
flow on loess-covered slopes and a quick increase in river discharge, as was witnessed in July 2021,
when the river flooded, causing extensive damage.

France

Figure 4: Geul river basin location
3.2 Vechtriver basin

The Overijsselse Vecht, a tributary of the Rhine, is a low-energy, sand-bed river that flows
partially through the Netherlands and partly through Germany (Figure 5). Originating in the German
state of Nordrhein-Westfalen flows through the state of Niedersachsen and, after approximately one
hundred kilometers, crosses the Dutch-German border, where it flows through the Dutch provinces of
Overijssel and Drenthe before discharging into the Zwarte Water Lake, flowing into lake Ijssel, located
in the central-north Netherlands. It has a total length of 182 kilometers, of which sixty kilometers are
located in the Netherlands, and a total catchment area of 3,780 kilometers squared, of which 1980
squared kilometers are located in the Netherlands (Bijlsma & Blind, 2006).

The elevation difference ranges from more than 100 m over the entire course to only 10 m for
most Dutch parts. It is a rain-fed river system with a mean annual flow of around 22.8 m3/s and a mean
annual flood peak of 160 m*/s measured at Mariénberg gauge station from 1995 to 2015. The catchment
average annual precipitation in the Overijsselse Vecht varies from 700 to 825 mm, with average
evapotranspiration of 525 mm. The mean annual temperature is nine °C, ranging from —22 to 35 degrees
Celsius (KNMI). The catchment's outlet near Emlichheim, near the border with Germany, is of particular
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interest as it represents the upstream hydrological and flood risk boundary condition for flood risk
assessment on the Dutch side. The Overijsselse Vecht valley geomorphology was shaped by
fluvioperiglacial sands that were locally topped by aeolian cover sands (Huisink 2000). Aeolian drift
sands accumulated near the Overijsselse Vecht from the overexploitation of agriculture during the Late
Holocene (Jan Pierik et al., 2018). The Vecht was a meandering river until 1896 when sections of the
river were diverted and weirs were constructed. The river was channelized with five weirs managing the
water levels after 1914. As part of river restoration efforts aimed at restoring the river's original physical
and ecological qualities, meandering side channels that bypass the weirs were recently constructed.
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Figure 5: Vecht river basin location
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4 DATA AND MODEL SETUP

4.1 Data availability

This section summarizes the available datasets for several meteorological variables, focusing on
precipitation, and discharge data. Depending on the dataset type and provider, the spatial and temporal
resolution of available rainfall, temperature, and potential evapotranspiration data varies. Before the data
can be used to force the models, it is resampled to match its temporal and spatial resolution.

4.1.1 Precipitation

The precipitation product can be obtained from various sources, including the Royal Netherlands
Meteorological Institute (KNMI), the Dutch national weather service; the Climate Data Center (CDC)
of the German national weather service (DWD); the Climate Data Store (CDS) of the Copernicus
Climate Change Service and other global datasets.

The KNMI dataset, also known as Rd1 version 5, is a collection of files containing gridded daily
precipitation sums measured at approximately three hundred stations in the Netherlands from 8 a.m. to
8 a.m. the following day. The spatial resolution is 1 km, with a daily temporal resolution of 1 week from
1950-01-01 to the present, with an average delay of 4 weeks.

EOBS is an observation-based European daily gridded dataset for precipitation provided by the
Copernicus Climate Change Services. The EOBS dataset is available in grids with spatial resolutions of
0.1° and 0.25° and daily resolution. It covers only land precipitation in Europe (including Iceland, as
well as parts of Northern Africa, the Middle East, and Russia). ERAS is the latest reanalysis dataset
available at a spatial resolution of 0.25°, made available by the European Centre for Medium-Range
Weather Forecasts (ECMWF).

There are uncertainties associated with ERAS and the EOBS datasets stemming from
measurements, spatial interpolation of the observations, and the model itself (reanalysis). REGNIE is a
grided dataset with a 1-kilometer spatial scale and daily temporal resolution, provided by DWD Climate
Data Center CDC. The grids are derived from station measurements with the method REGNIE (DWD,
2017).

In addition, RADKLIM high-resolution radar-derived precipitation data can be employed. The
data are from the DWD radar-based precipitation climatology based on the RADOLAN technique
reprocessing version 2017.002. The precipitation sums (RW) are calculated using radar-based
precipitation estimation and corrected using gauge precipitation data. The YW products are quasi-gauge-
adjusted five-minute precipitation rates using RW. The data is accessible in a 1 km x 1 km grid and
spans the years 2001 to 2017, with extensions until 2021 (DWD, 2022).

The main properties of the available and accessible datasets are listed in the table below. Whether
the dataset derived from the actual observations (E-OBS) or the radar estimate is more appropriate to
use will be evaluated by a short precipitation data analysis in a subsequent stage of this study.
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Table 2: Summary of the available gridded precipitation datasets that provide coverage of the study

areas
Source Name Domain  Period of Available Available  Available  Snapshot
record timestep(s)  resolution format(s)

nl rdr 01.01.1951
KNMI data_rtc  Netherlands to 5 min lkmx 1 km HDF5

or Sm 14.02.2022
Deutscher 01.01.1931
Wetterdien REGNIE to present Daily ASCII
st DWD Germany lkmxlkm — [

01.01.2001 Hourly/ Binary/ .
RADKLIM to 5 min ASCII
01/01/2021

CDS, 01.01.1950
Copernicus E-OBS to Daily 0.1°x 0.1° NetCD
Climate 30.06.2021 F
Change Europe
Service, Hourly
ECMWF 01.01.1979 down NetCD

ERAS to present to 0.25°x0.25° F/csv

yearly

As both river catchments are transboundary and a substantial area lies beyond the Netherlands'

country boundaries, it is reasonable to utilize measurements from rainfall gauge stations within the basin
area provided by the weather services of the bordering countries (Germany for both the Vecht and the

Geul rives and Belgium for the Geul).
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Figure 6: Snapshot of the interactive map made available by the rdwd R package, displaying a rain
gauge station located near the border (catchment area), for which no public data are accessible
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Below is a summary of the rain gauge station data collected from DWD for each catchment. The
nearest stations for each catchment were selected using the rdwd R package's interactive map
(Boessenkool, 2022). Unfortunately, it was observed that most border stations lacked accessible records
(Figure 6). Nonetheless, a handful of observational stations with recent data were identified (Table 3 &
Table 4) and utilized in this study.

Table 3: Rain gauge stations nearby Geul (Source: DWD)

STATION NAME Scale LON° LAT° HEIGHT Period of record

ID (m)

4667 Selfkant-Havert daily 591 51.04 46 01.01.1961 to 04.04.2022
15000 Aachen-Orsbach hourly 6.02 50.80 231 01.04.2011 to 25.04.2022
15927 Ubach-Palenberg daily 6.09 50.93 82 01.10.2017 to 19.01.2022

Table 4: Rain gauge stations nearby Vecht (Source: DWD)

STATION NAME Scale LON° LAT° HEIGHT Period of record

ID (m)

357 Bentheim, Bad hourly 7.13 52.30 50 01.09.2005 to 31.12.2021
1223 Ringe-Grofiringe hourly 6.94 52.59 13 01.09.2005 to 31.12.2021
4849 Steinfurt- hourly 7.34 52.12 64 01.06.2005 to 05.04.2022

Burgsteinfurt

3640 Nordhorn-Blanke daily 7.06 52.41 24 01.01.1931 to 24.04.2022
1230 Emsbiiren-Ahlde daily 7.29 52.37 48 01.01.1961 to 24.04.2022
5131 Twist daily 7.11 52.63 21 01.01.1941 to 24.04.2022

4.1.2 Additional forcing data

The wflow sbm hydrological model utilized in this work employs temperature and potential
evapotranspiration as forcing data. The ERAS dataset provides hourly and daily estimates for a variety
of climate variables, such as temperature (T) and solar radiation (K'), from which the potential
evapotranspiration (E') can be computed. In practice, potential evapotranspiration is estimated from only
remotely sensed daily global radiation and air temperature as inputs, using the modified Makkink
equation, mentioned by De Bruin and Lablans (1998), as follows:

L,E = 0.65&* K* (13)

where E denotes evapotranspiration, L, the latent heat of vaporization, K* is the global radiation, s
the saturated vapor pressure gradient relative to water, Y the psychrometric constant.
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4.1.3 Discharge

Discharge data for the Vecht river (Table 5) are available from 12 gauge stations (outlet and
interior gauges), of which eight are obtained from the Lower Saxony State Office for Water
Management, Coastal Protection and Nature Conservation NLWKN and four are obtained from the
Water Information System of the North Rhine-Westphalia state ELWAS with a daily temporal
resolution.

Table 5: River gauge stations in the Vecht river

Station Name Lon Lat Temporal Period of record Source
ID resolution

9286106 Ohne 7.287 52271  daily 01.02.1968 to 31.12.2017 NLWKN
9286127 Wehr 6.971 52.512  daily 01.01.1950 to 30.12.2017 NLWKN

Neuenhaus

9286136 Lagel 6.971 52.463  daily 01.03.1963 to 31.12.2017 NLWKN
9286137 Lage Il 6.971 52.465  daily 01.05.1963 to 31.12.2017 NLWKN
9286138  Lage III 6.963 52.467  daily 01.04.1972 t0 31.12.2017 NLWKN
9286155  Osterwald 7.029 52.545  daily 01.11.1963 to 31.12.2017 NLWKN

9286162 Emlichheim 6.857 52.604  hourly 23.05.2004 to 05.05.2022 NLWKN

9316285  Tinholt 6.950 52.554  daily 01.11.1968 to 31.12.1997 NLWKN
9286110  Darfeld 7.254 52.063  daily 11.01.1957 to 07.03.2010 ELWAS
9286190 Bilk 7.296 52238  daily 04.07.1957 to 01.01.2020 ELWAS
9286270 Temmingsmu  7.354 52.112  daily 01.11.1957 t0 01.01.2020 ELWAS
9286455 léll‘reonau 7.021 52221  daily 01.11.1968 to 19.12.2019 ELWAS

For the Geul river, discharge is measured at ten different points at different temporal resolutions,
as summarized in Table 6. The data were obtained from the Water Board of Limburg (Waterschap
Limburg) and the Agriculture, Natural Resources, and Environment entity of the Public Service of
Wallonia (SPW).
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Table 6: River gauge stations in the Geul

Station ID Name Lon Lat Temporal Period of record Source
resolution
10.Q.29 Cottessen 5.934 50.758 15 mins 1993.01.01 to 12.11.2021 WL
10.Q.30 Hommerich 5914 50.807 15mins  03.09.1969 to 12.11.2021 WL
10.Q.36 Meerssen 5.726 50.891 15 mins 01.01.2010to0 12.11.2021 WL
10.Q.63 Schin op Geul 5.869 50.855 15mins  01.01.2016to 12.11.2021 WL
11.Q.32 Eyserbeek, Eys 5.929 50.825 15mins  01.01.1993to 12.11.2021 WL
12.Q.31 Selzerbeek, Partij 5.922 50.811 15mins  03.09.1969 to 12.11.2021 WL

12.Q.46 Selzerbeek, molentak  5.912 50.814 15 mins 01.01.1993t0 12.11.2021 WL
13.Q.34 Gulp, Azijnfabriek 5.891 50.814 15mins  03.09.1969 to 12.11.2021 WL
L6660 Sippenaeken 5.941 50.750 hourly 13.06.1996 to 31.12.2021 SPW

52911002  Kelmis (La calamine) 6.010 50.717 hourly 01.01.2009 to 31.12.2021 SPW

4.2 Wflow_sbm hydrologic model

The wflow_sbm distributed hydrological model described by Schellekens et al. (2020) was used
in this study to apply and evaluate the data assimilation method in rainfall-runoff process modeling.
Witlow _sbm computes the water balance at each point in each time step using gridded topography,
forcing data, soil, and land use, and it is used to model the hydrological processes in the Geul and Vecht
river catchments. The kinematic wave equation is used to compute the hydrological routing for the river
flow, surface flow, and horizontal subsurface flow.

The structure of the model is illustrated in Figure 7. Snow, soil moisture, upper storage zone, and
lower storage zone are the model states considered in each grid cell. Rainfall, snowfall, snowmelt, actual
evapotranspiration, infiltration, capillary rise, percolation, direct runoff, quick flow, and baseflow are
the fluxes that govern the behavior of the model states.

Built by Deltares, the wflow sbm models are provided for both the Geul and the Vecht river
catchments. The wflow_sbm model for the Vecht is calibrated for horizontal hydraulic conductivity
fraction in the work of Villareal (2021). As the models are assumed to be perfect (no model parameter
uncertainties are considered further in this work), the parameters used in the model, their units and range
of values, and the variation of each parameter throughout the catchments are as presented in Villareal
(2021) and not detailed again here.



20 Koronaci, K. 2022. Data assimilation for improved discharge predictions with the wflow_sbm model:
A case study of the Overijsselse Vecht river.
Ljubljana, UL FGG, Masters of Science Thesis in Flood Risk Management.

Precipitation

Open water (land) runoff and

Infiltration or
saturation
excess

l

Kinematic
wave for
overland flow
routing

t

Unsaturated store Open water
(land) runoff

Kinematic

Saturated subsurface flow
L

self.Precipitation
self.PrecipitationPlusMelt @ ———
self.Snow
dry snow
self.Interception T e ]
self.CanopyStorage free water
self.SnowWater
.RunoffRiverCells +
self.RunoffLandCells
| seffsoilinf | | self.pathint A
self.InfiltExcessSoil
self.InfiltExcessPath self. ActEvapOpenWaterRiver +
unpaved self ActEvapOpenWaterLand
self.RiverRunoff +
self. ActinfiltSoil self ActinfiltPath
self.LandRunoff
self.SumEvapUstore
self.UStoreDepth self.WaterLevelR +
. self.WaterLevell
(*self.KinWaveVolumeR +
*self KinWaveVolumel)
self.SumEvapSat

self.SatWaterDepth

—p Lateral fluxes

elf.SatWaterFlux =3 Vertical fluxes
Volumes

Sum = self.Inwater
"1 Sum = self AvailableForInfiltration
* Use this variable for aggregation

Figure 7: a) Schematic illustration of the wflow sbm processes and states (Schellekens et al., 2020),
b) model states and fluxes in terms of internal variable names.
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5 RESEARCH METHODOLOGY

This study's approach will follow the steps outlined in Figure 8.
The first phase involves input collection, selection, and analysis. Precipitation, discharge, and other
relevant data will be selected and evaluated from the available datasets in section 4.1. As the input errors
propagate throughout the study, an exploratory precipitation data analysis is carried out for uncertainty
estimation of the available gridded datasets and to determine whether it is appropriate to force the wflow
sbm model.

In a second step, deterministic discharge predictions are simulated in Delft-FEWS for each
model over a 10-year historical simulation period. The results are evaluated at each station where
observations are available. Finally, the overall model performance is assessed using appropriate
measures, and whether they are suitable for continuing the DA analysis is determined.

Before employing data assimilation, a reference model must be developed. An open-loop
simulation will be used as a benchmark, and alternative possibilities (e.g., autoregressive correction)
will be investigated. The reference simulation and uncertainty framework selection criteria are based
on an ad hoc process that combines literature recommendations and trial-and-error methods. A
framework that automates the process is created in advance to be used when running the simulations
with DA and processing the results in the consequent stage. For this purpose, and for all the analysis
carried out in this study, Python coding is used.

Following the configuration of the DA scheme, repeated runs of the wflow sbm model with
OpenDA are completed, and the updated simulation output from the EnKF algorithm is compared to the
selected reference simulation discharges, as well as the observations. To analyze the update of the model
states with DA, a similar analysis to Rakovec (2015) is conducted. Experiments include the most
essential model states in the study, with a special focus on the Upper Zone (subsurface water flow ssf;
saturated water depth swd) and Soil Moisture (ustore) states. The performance of DA in spatially
capturing model states when used with distributed hydrological models will be examined by observing
the changes in model states, thereby accomplishing the second objective of this study. Several
probabilistic verification techniques for verifying ensemble predictions of hydro-meteorological and
hydrological states will be utilized to assess the outcomes of the DA application in terms of discharge
prediction. Metrics such as the KGE, NSE, RMSE, pBIAS and r* as described in section 2.3, are utilized
in different parts of the results for various purposes (to assess the precipitation data error, compare the
deterministic simulation with the observations, and assess the DA effect in the discharge prediction

improvement).
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6 RESULTS AND DISCUSSION

23

In this section, results and discussion of the findings of this study are reported. Following the
methodological framework in Table 8, the results are presented in three parts. The first section refers to
the precipitation data analysis findings, followed by the deterministic simulation results; an analysis of
the model performance regarding discharge forecast when applying data assimilation is then discussed,
and finally, the DA effect on correctly updating the hydrological model states is assessed.

6.1 Precipitation data analysis

As mentioned in Section 2.2, uncertainties associated with the model forcing, among others,
reflect in the DA performance. A precipitation data analysis was conducted to assess the performance
and the uncertainties associated with the available gridded rainfall datasets, which would be employed
to force the hydrological models. Because of its high temporal and spatial resolution, the hourly dataset
of RADKLIM is of greater interest to use among the available datasets. The Radolan gridded dataset is
set to be compared with the available observational datasets, both gridded (EOBS) and in rain-gauge
stations (DWD), for each catchment.
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Figure 9: Comparison of the cumulative and daily rainfall time series between the DWD rain gauge
observations and the EOBS observational gridded rainfall dataset for Station ID 357 in the Vecht river
catchment for a) year 2021; b) the complete time series from 2011 to 2021

Initially, the accumulated rainfall values in the gauge stations were compared to the respective

approximated values of the observational gridded dataset EOBS for different years and gauge locations.
It was noticed that the point observations obtained from the German Weather Service (DWD) for nearby
stations in both catchments present a very high similarity (metrics like Nash Sutcliffe Efficiency
NSE~0.99) with the respective values from the EOBS dataset, as seen in figures Figure 9 and Table 10
for a selected rain gauge location in the Vecht and Geul river catchment respectively. Furthermore,
equivalent results are obtained for all other stations presented in Appendix B.1.
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Figure 10: Comparison of the cumulative and daily rainfall time series between the DWD rain gauge
observations and the EOBS observational gridded rainfall dataset for Station ID 15000 in the Geul
catchment for a) year 2021; b) the complete time series from 2011 to 2021

The high similarity of the datasets is attributed to the methodology used to derive the EOBS
dataset, which uses the observed precipitation in the rain stations to interpolate the data and obtain the
gridded data. Assuming a perfect agreement between the E-OBS gridded dataset and the corresponding
point observations in the catchments, it is more sensible for the Radolan dataset to be further evaluated
in comparison with the gridded EOBS dataset, to construct a fuller picture of it, not only in compared
in points but also spatially.
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Figure 11: EOBS and Radolan precipitation resampled into annual maximum precipitation values for
the station ID 15000 in the Geul catchment
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station ID 15000 in the Geul catchment

The annual maximum and mean precipitation trends of both datasets for station 15000 in the
Geul river catchment are observed in Figure 11 and Figure 12, respectively. For completeness, the results

for all stations are presented in Appendix B.
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Daily precipitation time series are presented below for a selected point location in each
catchment for the period of June-July 2021 at Geul; and June, July 2016 for the Vecht. Both gridded
datasets are interpolated in the point locations with coordinates corresponding to nearby rain gauge
stations. In addition, a 95% uncertainty band is presented for the Radolan dataset. While in Figure 13a
and Figure 14a, the daily precipitation is presented only for a selected period, including the July 2021
event in the Geul catchment and the summer months of 2016 in the Vecht, the correlation between the
datasets and the other metrics are computed and plotted in Figure 13b,c and Figure 14b,c for the
complete time-series (2011-2021).
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Figure 14: a) Daily precipitation at station point location with ID 15000 in the Geul catchment derived
from the Radolan gridded dataset and the EOBS gridded observational datasets. Uncertainty of the
Radolan is presented as a 95% uncertainty band; b) Annual values of selected performance metrics
(NSE, RMSE, KGE); c¢) Correlation scatterplots of the Radolan and EOBS daily time series for the

10-year period.

In Figure 15, a spatial comparison of the datasets is presented, where the maximum and mean
annual values for 2021 are computed for the same grid covering both basins. The EOBS grid is given
on the left, as it can be distinguished from the grid resolution (11 km), which is coarser than the Radolan
(1km) on the right. The mean annual precipitation values in Figure 15a and the maximum annual values
in Figure 15b present a considerable similarity in the spatial spread of the precipitation of the two
datasets. For a better understanding of the differences in the maximum values, Radolan is down-sampled

inthe 11 km grid as seen in Figure 15¢, where the Radolan seems to be underestimating the observational
dataset estimates.
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After the Radolan and the EOBS observational precipitation dataset were analyzed for the entire
available period, both in point locations and spatially, we can now qualitatively derive judgment based
on their agreement. As noticed throughout the analysis in this section, the Radolan gridded precipitation
fails to capture the extreme precipitation events, presenting either overestimation or underestimation of
peak flows. At the same time, it shows more consistency in representing smaller events. Despite the
radar data being calibrated with gauge observations, there might be a need for bias adjustment correction

of the radar dataset.
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Table 7: Performance metrics of the Radolan, EOBS rainfall dataset comparison for the complete daily
time-series (2011-2021)
KGE NSE RMSE

[-] [-] [mm/day]
Catchment averaged (Geul) 0.68 0.52 2.82
Station 15000 0.74 0.54 2.94
Station 4667 0.53 0.47 3.07
Station 15927 0.69 0.52 2.75
Catchment averaged (Vecht) 0.73 0.51 2.70
Station 5131 0.75 0.48 2.72
Station 357 0.72 0.58 2.75
Station 1230 0.71 0.49 2.81
Station 1223 0.73 0.56 2.64
Station 3640 0.68 0.45 2.96

Overall, as indicated by the metrics presented in the plots in this section (See also Appendix B.2)
and summarized in Table 7 for all stations, the Radolan presents a reliable performance with KGE values
varying from 0.7 to 0.58 and NSE values ranging from 0.45 to 0.58 and RMSE values ranging from 2.64
to 3.07 mm/day. Given its high spatial and temporal resolutions of 0.1° (~10 km) and 1 hour, it is thought
to be adequate for use in a precipitation-fed, fast-responding catchment like the Geul. Additionally, it
indicates good performance in the case of a larger catchment, such as the Vecht; hence rainfall input for
the wflow sbm model simulation in this work is based on Radolan forcing. The Radolan rainfall
estimate error metrics will be used as a guide when selecting the input uncertainty in the DA experiments
conducted later in this work.

6.2 Deterministic simulations

To demonstrate that the implemented models can simulate reasonable discharge estimates using
the Radolan rainfall product as forcing, this section presents the observed discharges and simulated ones
for selected gauge locations in both catchments. In the Delft-FEWS platform, where the hydrological
models of both catchments are integrated with the respective input data, the first open loop simulations
(without data assimilation) were run.

The wflow sbm models were initially forced with Radolan precipitation data and ERAS data for
potential evapotranspiration. The historical simulations are run for ten years, starting January 2011 to
December 2021, with a 10-day timestep, assuming perfect models and perfect forcing data. From the
first results of the open loop simulations (without DA and without the Radolan data gap filling with
ERADS), it is noticed that for the case of Emlichheim, the station presented in Figure 16 for illustration,
as is also noticed in all other stations for which observational data are available, the simulated flows
differ significantly from the observed ones. Due to gaps in the hourly rainfall dataset, this discontinuity
is reflected in the simulated discharges, as for every gap in the input forcing, the model restarts with a
cold state, often overestimating the next time step, resulting in the simulated discharge not being reliable,
and the model failing to capture both flow peaks and the baseflow over the entire simulation period.
This was resolved by setting up an alternative configuration so that ERAS precipitation data are used to
fill in any gaps in the Radolan dataset that are longer than two hours. Following the application of this
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adjustment, the simulated discharges exhibit a distinct consistency for the whole simulation period. The
rest of the analysis uses the “corrected” Radolan forcing.
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Figure 16: Hourly Observations of the Emlichheim discharge and wflow_sbm model difference before
and after correction with ERAS. In red, gaps in the uncorrected model output are highlighted.
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Simulated flows with the wflow_sbm model, along with the corresponding observed flows for
a few gauge locations in the Vecht, are presented in Figure 17 for a particular year (2016). The historical
simulations were run for a 10-year period (2011-2021), and depending on the availability of
measurements at each gauge, the correlation statistics are derived as shown in Figure 18 for each station.
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Figure 18: Correlation of simulated and observed discharge scatter plots at selected station location in
the Vecht catchment. Note that the correlation is computed for a different period in different stations,
depending on the period of record available at each station

The Nash-Sutcliffe model efficiency (NSE) and other metrics are computed at each stream
gauge location before the discharges are assimilated to validate the outcomes of the DA experiment. In
the case of Emlichheim, the catchment outlet, the NSE model efficiency coefficient between the
measured and simulated discharges is approximately 0.8, indicating that the hydrological model
performs well. Moreover, it is essential to recognize that NSE is sensitive to extreme values (peak flows)
that were not previously filtered. Additionally, for a 10-year simulation interval, the root mean-square
error (RMSE) varies from 1.11 m3/s at Temmingsmuhle to 9.5 m*/s at Emlichheim. For completeness,
additional performance statistics computed for the long simulation period, which spans from 2011 to
2021 and varies in different stations, are summarized in Table 8.

Table 8: Performance statistics to evaluate the model's predictive ability in selected stream gauge
stations in the Vecht river catchment

r NSE RMSE pBIAS
[-] [-] [m’/s] (%]

Emlichheim 0.79 0.63 9,5 -8.0

Lage I 0.59  0.54 4.36 -14.47
Ohne 0.78  0.22 3.75 -12.11
Wehr Neuenhaus 0.79  0.57 5.01 -20.7
Osterwald 0.71  -0.02 1.21 65.36
Bilk 0.80  0.36 1.72 -16.85
Temmingsmuhle 0.84 0.54 1.11 -21.74
Gronau 0.80 041 1.56 3.65

Similarly to the analysis carried out for the Vecht river catchment gauge locations, results are
presented below for the Geul river catchment, where a different period is selected to be presented (part
0f 2021) because of the interest in the July 2021 flood event.
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Figure 20: Correlation of simulated and observed discharges scatter plots at selected station location
in the Geul river catchment. Correlation is computed for a different period in different stations,

depending on the period of record available at each station

The results of the deterministic simulations reported in this section will aid in selecting a
benchmark simulation to contrast with the simulated discharges in the following step when observed
discharges are assimilated. The grid-based wflow sbm models produced satisfactory results at the Geul
and Vecht catchment scale despite not being recalibrated.

However, the direct comparison of the simulated and measured discharges in various stations
presented in Figure 20, together with the metrics summarized in Table 9, indicate that the available
model for the Geul River does not correctly represent high peak flows, as in the case of the July 2021
flood event (for other years as well), and, as in this study, uncertainties associated with the model
parameters are neglected, in the case of a quick responding catchment with a time skill of just a few
hours, proceeding with a data assimilation scheme where we only account the uncertainties associated
with the forcing data and observations, results in very unrealistic results.

Moreover, as using DA with wflow_sbm is experimental and incomplete, technical problems
were encountered while linking the Geul wflow_sbm to OpenDA. Hence, the data assimilation setup
and results given from now onwards are limited to the Vecht River catchment; however, some
speculations will be made for the Geul River based on the conclusions drawn from the Vecht River.
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Table 9: Performance statistics to evaluate the model's predictive ability in selected stream gauge
stations in the Geul river catchment.

R NSE RMSE pBIAS

(-] (-] [m’/s] (%]
Sippenaeken 0.59 0.076 1.54 -34
Cottessen 0.93 0.380 1.93 -22
Hommerich 0.99 -3.83 9.07 91.34
Meerssen 0.78 -0.54 4.47 -31
Schin op Geul 0.85 -7.67 8.20 -17.20

6.2.1 Model States

Before updating with DA, we look at the model states of interest. As stated in the study's
research objectives, this analysis is limited to the Vecht river catchment. Of particular interest to analyze
are the slow-changing components of the models, Subsurface Flow (ssf), Saturated Water Depth (swd),
and Soil Moisture (ustorelayerdepth) states, the behavior of which, together with other hydrological
states, is depicted in Figure 21 over a year. Since we want to examine the effect of updating with the
EnKF in the hydrological states, a preliminary analysis was performed to investigate the states' behavior
and whether there is any association between them. Figure 21 hints at a considerable correlation between
the river discharge (q_river) and the saturated water depth and subsurface flow, becoming more visible
during spring, where the flow peaks usually happen. However, there is a time lag between the peaks of

those components.
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Figure 21: Hydrological model states variation at Emlichheim for a selected year (2016)

As it is challenging to derive judgment from the annual variation of the model states, a
correlation heatmap of model states is presented in Figure 22. As expected, the correlation is positive
and more substantial between the states of interest (ssf, swd, ustorelayerdepth) and the river discharge
(q_river) during the whole simulation period. Additionally, there is a considerable correlation between
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the surface water flow and depth, with the river flow and river water depth. Therefore, further, in the
analysis, only the states that indicated higher correlation values (a correlation threshold of 0.1 was
considered) are included in the DA experiment, namely the subsurface water flow (ssf), saturated water
depth (swd), overland flow (q_land), overland water depth (h land), soil moisture in three layers
(ustorelayerl, 2 and 3), river flow (q river) and river water depth (h river). States with negative
correlation (tsoil) or correlation values lower than 0.1 (snow) are excluded from the rest of the analysis.
Additionally, the canopy storage state is excluded.
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Figure 22: Model state correlation at Emlichheim
6.3 Experiments with DA
6.3.1 Experimental setup

This section presents the filtering methods’ configuration setup for the assimilation of
observations in the wflow_sbm model to improve the discharge predictions, particularly at the catchment
outlet. The hydrological observations used for updating the model states are discharge measurements
due to their availability in high temporal resolutions and their good representation of the catchment
wetness conditions, which is significant for operational forecasting. Model states are updated with
externally measured variables to obtain proper initial conditions in the following timestep. The
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observational discharges are assimilated daily for two selected flood events in the Vecht river basin
depicted in Figure 23. Additionally, an overview of the selected assimilation periods is given in Table
10. Only discharge data at the catchment outlet (Emlichheim) are assimilated. Another location (Gronau)
is presented to validate the results in the first experiment. In contrast, discharge data are assimilated in
5 different locations in the second experiment. Finally, results are presented again for the stations of
Emlichheim and Gronau (the other point results are shown in the Appendices).

In this work, only input forcing uncertainty is represented from ensembles, and observation
uncertainties are considered, disregarding any uncertainty related to the model parameters or initial
conditions. A precipitation ensemble is comprised of a limited number of spatial realizations in time that
represent uncertainties related to precipitation's spatial and temporal variation (Rakovec, Hazenberg, et
al., 2012). The ensemble of simulations is derived from perturbing the model forcing with stochastic
spatially correlated model error. In an open loop simulation, the model is forced with uncertain rainfall
input with a simulation memory of forty-eight ensemble members derived using stochastic perturbation
for precipitation and deterministic PET to produce an ensemble of simulated discharges out of which a
single realization was chosen to be further used as a reference for comparison with the DA ensemble
discharges. The selection procedure of this reference simulation is detailed in the next section. The
ensemble size was selected to be forty-eight members for the OL simulations and 16 for the filtered
experiments for computational reasons. However, tested experiments with 24 and 48 realizations were
not necessarily better than those with sixteen ensemble members. The error of the discharge observations
is considered to have a normal distribution with a standard deviation of (kQ obs)2, with k ranging
between 0.01 and 0.1 (as seen in Weerts & el Serafy, 2006).

A sensitivity analysis was carried out to investigate the influence of the error selection for both
the forcing and the observations (Appendix C.1). Based on the findings, the best selection of errors was
made to continue the rest of the analysis. The EnKF is used to update the hourly spatially distributed
wflow sbm model's grid-based distributed states. The hydrological cycle is simulated for the Vecht
(1800 km2) for two small-scale experiments. First, the EnKF algorithm was applied to a one-month
interval from 15" June to 15" of July 2016, which included both a dry and a wet period, with one flood
event, and to a second experiment, for the period 15 January - 15 March 2016, with three consecutive
flood events.
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Figure 23: Observed discharge in the outlet (Emlichheim) and other interior flow gauges in the Vecht
river basin during 2016. Two characteristic winter and summer flood events are selected for the
analysis
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Extensive runs are performed in the first experiment to examine the impact of different uncertainty
values assigned to the forcing input and observations, select a reference simulation, as well as investigate
the effect of DA in the model states. In contrast, in the second experiment, where a longer assimilation
window is considered, the perturbation errors and reference simulation are chosen in the same way as
in the first experiment. In addition, the effect of DA in the predicted discharges is evaluated.

Table 10: An overview of the experiment periods selected for the DA analysis

Maximum
Period observed
discharge [m?/s]
1 15Jun2016—15Jul 2016 81
2 15Jan2016 — 15 Mar 2016 98

6.3.2 Selection of a reference simulation.

Open loop ensemble model realizations were generated before DA application to ensure good
model results, no numerical instabilities, and select a reference simulation. These simulations were run
without introducing any error to the system, and the selection of the benchmark simulation was made
considering the ensembles should be as near to the deterministic simulation as possible and have a
reasonable ensemble spread. In this work, the selection of the benchmark simulation is made by a visual
inspection, while several metrics are available in the literature. Additionally, the standard deviation of
ensembles can be evaluated against the measurements; if the spread of the standard deviation covers the
observations, it is deemed appropriate (Dharmadasa, 2014). As the deterministic runs produced fair
results, as seen in the previous chapter, an open loop probabilistic simulation is considered more suitable
as a reference simulation to evaluate the DA effect.

The most challenging part of a DA experiment lies in selecting the optimal input uncertainties.
While there are reference values for the precipitation and observation noise to be used in DA
experiments, to be able to choose the best reference simulation based on the proximity of the
probabilistic simulation with the deterministic one and the most reasonable ensemble spread, a
sensitivity analysis was performed in advance to investigate the response of the filtered model when
different perturbation noises for the precipitation and observations are given. The results of multiple
runs conducted with the first experimental setup to investigate how the filter reacts when increasing or
decreasing the noises of both forcing and the observations, summarized in the appendix, were utilized
to derive the reference simulations presented in this section. The simulations presented in the appendix
are conducted with eight ensemble members for computational efficiency. Their only purpose is to guide
us in selecting the correct uncertainty values for the rest of the analysis.

From the extensive work in the appendix, the three best Open Loop scenarios were determined
as follows:
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Figure 24: Open loop simulation results for three different combinations of uncertainties: a) forcing
standard deviation 2.5, spatial correlation 30 km; b) forcing standard deviation 2, spatial correlation 30

km; c) forcing standard deviation 2, spatial correlation 10 km

While when it comes to metrics, all three scenarios present similar results when compared with
the deterministic simulation (RMSE mean value between the ensemble mean of the OL simulations and
the deterministic one is 12.49, 12.13, and 12.08 m?/s, respectively for cases a, b and ¢ in Figure 24), the
OL reference simulation was chosen as the one with the most reasonable ensemble spread, which in this
case corresponds with the one in Figure 24b. A good ensemble spread has a relatively small spread,
where uncertainty is small, but it also should have the ability to span the observations.

6.3.3 Model performance regarding discharge prediction

Different parameter values for the observational noise were investigated (See appendix C.1),
and the one that produced the best results (ensemble spread is closer to the observed values) is presented
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in this section. The parameters selected for the noise models and the chosen number of realizations are

summarized in Table 11. Finally, the DA performance regarding discharge predictions is evaluated using
RMSE.

Table 11: Error model setup for the DA experiments

Qobs EnKF Forcing Spatial
[m?/s] [Nr. of [mm)] correlation
ensembles] [m]
0.1 8 2.5 30000
multiplicative multiplicative

Initially, the error model of the forcing was introduced as an additive, considering the
uncertainty metrics that resulted from the precipitation data analysis of Radolan in section 6.1. However,
this often leads to algorithm failure as negative precipitation values are produced at certain timesteps.
To avoid this, the forcing noise was set as multiplicative. At the same time, outcomes from the sensitivity
analysis were utilized for determining the optimal value, where trial and error runs were made for a wide
range of forcing uncertainty (factors from 0.5 to 3, results from 0.5 to 1.5 are presented in the appendix).
A multiplicative error in the range of 2-3 mm produces the best discharge estimates, as seen in the results
presented throughout section 6.3. It is difficult to comprehend how such a sizeable multiplicative error
produces the best estimates; however, this choice is backed up by the sensitivity analysis results.

Additionally, a spatial precipitation correlation of 30 km was introduced. The range of the
observations error model was selected based on literature (Weerts & el Serafy, 2006) and was further
defined to be 0.1 based on the sensitivity analysis. Below, the results of the two experiments with the
same error model configurations but different assimilation timelines and the number of assimilation
locations are presented and discussed.

6.3.3.1 Experiment 1

The first experiment covers 30 days from 15 June 2016 to 15 July 2016, when a flood with a
peak discharge of 81 m3s-1 is observed. Discharges are assimilated every 24 hours from the station of
Emlichehim, located near the catchment outlet. The error model configuration for both experiments is
summarized in Table 11.
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Figure 25: DA simulation results, experiment 1, Emlichheim. The observed discharges are given in the

dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of
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the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a
95% uncertainty interval, in the sky blue.

The visible lag may be attributed to uncertainties in the initial conditions, which are not
considered in this work, and perhaps the ensemble size. In addition, as the assimilation window
progresses, the influence of updating becomes more apparent, and the ensemble spread better captures
the observations. This indicates that a longer assimilation window would be more suitable; however, as
the time available for this study is restricted, smaller assimilation windows are preferred to avoid
extensive computational processing times.

Table 12: An overview of the mean, maximum and minimum flows corresponding to observed, open
loop, and filtered discharges at Emlichheim

Mean Max Min
Q_obs [m?/s] 27.65 85.85 10.13
Q_ref [m¥/s] 19.62 96.43 4.08

Q EnKF[m¥s] 23.16  104.89 4.09
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Figure 26: DA simulation results, experiment 1, Gronau. The observed discharges are given in the
dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of
the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a

95% uncertainty interval, in the sky blue.

Table 13: An overview of the mean, maximum and minimum flows corresponding to observed,
open loop and filtered discharges at Gronau.

Mean Max Min

Q_obs [m?/s] 5.02 27.79 1.19
Q _ref [m¥/s] 2.84 19.34 0.37
Q EnKF[m¥s]  3.05 21.17 0.40

Figure 25 depicts the influence of discharge observations assimilation from Emlichheim at
Gronau, an interior gauge upstream of the assimilation location. As observed in the instance of
Emlichheim, assimilation brings simulated discharges closer to the observed values. The following
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paragraphs will explain whether this effect is less pronounced in the interior gauges than at the
assimilation location. Appendix C.2 contains additional results of the DA effect on the expected
discharges at different interior gauges of the basin. In the case of Gronau (for location in the catchment,
see gauge nr. 5 in Appendix A), the filtered discharge is closer to the observation than the reference;
however, the ensembles spread cannot capture the observation peak discharge as seen in Figure 26.
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Figure 27: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run
and the daily observed discharges in selected stations. The red lines in the boxes represent the RMSE
median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the
circles show the extreme values of RMSE.

A summary of the data assimilation performance for all gauge stations is shown in Figure 27,
where boxplots of the RMSE between the ensemble means for each day of the assimilation window
between the discharges updated with EnKF and the observations are presented to evaluate the efficacy
of DA. Figure 28 also shows the RMSE between the reference simulation ensemble mean and the
observations. One approach for evaluating the DA effect is to compare the RMSE (MAE) values at each
gauge in the simulation with and without. As seen in Figure 27 and Figure 28, the updated simulation
reduces the RMSE values at Emlichheim, whereas at other stations, the effect is less pronounced, or

there is no positive effect at all (e.g., Bilk).
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Figure 28: Boxplot of RMSE of the mean ensemble for each day between the open loop reference run
and the daily observed discharges in selected stations. The red lines in the boxes represent the RMSE
median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the
circles show the extreme values of RMSE.

The coefficient of determination R, a goodness of fit measure that represents the percentage of
reduction in prediction error, calculated using the RMSE values in Figure 27 and Figure 28, is given in
Table 14, where positive values indicate a positive effect of DA, whereas negative values the opposite.
As expected, the DA effect when assimilation only in one location downstream has little or no positive
impact at all in most upstream gauges. However, as the stations near the outlet present higher interest in
flood forecasting in the Netherlands, our focus remains at Emlichheim, where the data assimilation
process results in a 21.05 % improvement of the model discharge prediction. The results summarized in
the table below are analogous to hydrograph results. Bilk was notably the station where the OL
simulation had a significantly better performance than the DA one, as seen in Appendix C.2.

Table 14: The coefficient of determination R* [%] for seven different stations after DA application

Lagel Osterwald Wehr Ohne Bilk Gronau Emlichheim
Neuenhaus
R?[%] 3.57 16.67 -8.33 -11.76 ~ -511.11  5.26 21.05

Figure 29 depicts a direct comparison of the RMSE between the OL and DA ensemble mean,
where it is evident that the RMSE is lowest at the assimilation location. Overall, we may generalize that
data assimilation is effective, as there is a considerable reduction in the RMSE for the downstream
gauges but less for the upstream ones. That is closely related to the distance from the point of
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assimilation, which in this case is the outlet; therefore, as anticipated, the upstream gauges are influenced
by DA less or not at all.
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Figure 29: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run
and the open loop reference run in selected stations. The red lines in the boxes represent the RMSE
median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and the
circles show the extreme values of RMSE.

6.3.3.2 Experiment 2

For the second experiment, a larger assimilation window is considered, covering a 60-day period
from 15 January 2016 to 15 March 2016, where three consecutive flood peaks are observed, with a
maximum discharge of 98 m3s-1. The discharge observations are assimilated every 24 hours from
Emlichheim (near the outlet of the catchment) and four interior gauges (Lage I, Ohne, Bilk, Gronau),
and the error model is chosen the same as in the first experiment as summarized in Table 11. The
reference simulation selected for the second experiment is developed for a significantly longer
simulation time, while the assimilation run is only done for 60 days for computational reasons. The
different initial conditions for the reference and DA run contribute to the significant differences between
the two in the initial timesteps, as noticed in the results below.

As seen in Figure 30 and the summarized extreme and mean discharge values for the
observations, reference simulation, and filtered results in Table 15, it is noticeable that the results with
DA are again closer to the actual values (observations) than the ensemble means of the OL simulation.
A mismatch is noticed in the first steps, stemming from uncertainties in the initial conditions. The
positive effect of a longer assimilation frame is noticed, especially in the last flow peak, where the
ensembles capture the observations very well.

Additionally, an apparent positive effect of streamflow assimilation is shown in Figure 31,
which illustrates the results for the interior gauge of Gronau, where it is notable that the simulations
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demonstrate a very good fit with the observed values. Moreover, the extremes and mean discharge and
captured very well at Gronau (see Table 16), with the maximum discharge with DA (Q_EnKF) going
down to 19.73 m*/s from maximum open loop reference discharge (Q_ref) at 21.92 m?/s. The maximum
discharges refer to the second flood peak with an observed discharge of 15.35 m?/s, and this discharge
reduction translates to a 10% reduction in the absolute error.
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Figure 30: DA simulation results, experiment 2, Emlichheim. The observed discharges are given in the
dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of
the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a

95% uncertainty interval, in the sky blue.

Table 15: An overview of the mean, maximum and minimum flows corresponding to observed,
open loop and filtered discharges at Emlichheim for the second experiment.
Mean Max Min

Q obs[m¥s] 4674 10552  19.51
Q ref[m¥s]  31.64 12673  12.95
Q EnKF[m¥s] 3493 11469 1036

As was anticipated, the simulation with the discharge measurements assimilation at five selected
catchments produces better results, bringing the DA discharge predictions closer to the observed
discharges. This positive effect is noticed at all locations where streamflow observations were
assimilated (See Appendix C.3). Similarly to the first experiment, the assimilation effect increases as
we go further in the assimilation window. Additionally, the lower flows at this station might
substantially affect the DA application in this gauge. This is not only attributed to the DA effect but also
to the flow magnitude at each assimilation station. It was noticed that the DA effect is more significant
in stations with lower flows. This is also related to the model's ability to represent lower flows better, as
was noticed in the first experiment and the deterministic run.
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Figure 31: DA simulation results, experiment 2, Gronau. The observed discharges are given in the
dotted line, the open loop reference simulation ensemble mean in the red line, the ensemble mean of
the DA simulation (updated with the EnKF) in the blue line, and the ensemble spread, representing a

95% uncertainty interval, in the sky blue.

Table 16: An overview of the mean, maximum and minimum flows corresponding to observed,
open loop and filtered discharges at Gronau for the second experiment.
Mean Max Min

Q_obs m¥/s] 4.87 15.35 1.91
Q_ref [m¥/s] 4.29 21.92 0.9
Q EnKF [m’/s] 4.89 19.73 1.06

From the additional results presented in Appendix C.3 and summarized in Figure 32, it is
apparent that not only the location of the flow gauge influences the DA results but also the magnitude
of flows at each station, as the wflow sbm model has a better predictive skill at lower flows, as also
seen in the deterministic simulations in section 6.2. Overall, the mean RMSE between the observations
and discharges with DA is slightly lower than the RMSE between the observations and the OL
simulation discharges. However, the RMSE spread is distinctively smaller after DA, especially at
Emlichheim.
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Figure 32: Boxplot of RMSE of the mean ensemble for each day between the updated with EnKF run
and the daily observed discharges in selected stations. The green lines in the boxes represent the
RMSE median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and
the circles show the extreme values of RMSE.
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Figure 33: Boxplot of RMSE of the mean ensemble for each day between the open loop reference run
and the daily observed discharges in selected stations. The green lines in the boxes represent the
RMSE median, box borders are the 25 and 75 percentiles, whiskers are the 9 and 95 percentiles, and
the circles show the extreme values of RMSE.
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Utilizing the metrics presented in Figure 32 and Figure 33, the coefficient of determination R?
is computed as seen in Table 17, where positive values of R? are given for all assimilation stations
considered in the second experiment. This indicates a positive effect of the DA application. However,
the percentage of reduction error is related to the discharge magnitude in each station, so a higher rate
of error reduction (36.41% at Gronau) does not necessarily translate into a higher absolute error
reduction, as R?is not always straightforward. Noticeably, the DA effect is positive at all stations when
multiple streamflows are assimilated, unlike the first experiment where measurements only near the
outlet were assimilated. However, for the rest of the analysis, the first experiment with a shorter
assimilation window and one assimilation location is considered when exploring the effects of DA in
hydrological states and fluxes spatially.

Table 17: The coefficient of determination R? [%] for five different stations after DA application
Lagel Ohne Bilk Gronau Emlichheim
R*[%] 3.98 23.46 29.94 36.41 3.82

6.3.4 Model performance regarding state updating

The following case is presented to explore the effect of the DA on the update of spatially
distributed model states. The mean difference between the predicted and updated model states (refers to
the EnKF algorithm steps as described in Figure 1) is shown in Figure 34 for three different time steps,
for every state included in the analysis, selected after examining the model performance regarding
discharge predictions for the first experiment (See 6.3.3.1). These examples aim to aid our understanding
of the discharge measurement assimilation impact in the gridded hydrological model. As the model
simulations (at the outlet and most of the interior gauges) are mainly underestimating the observations,
water is added to the system during the update step; however, this remains location specific as further
from the assimilation location, the model overestimates the discharges, so water is removed from the
system.

Below we see how the EnKF captures the hydrological system spatially, varying from a positive

to a negative difference depending on the location on the grid.
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Figure 34: Difference between the predicted (instates) and updated (outstates) model states on three
selected days (23, 25, 29 June 2016). Only the most sensitive model states are shown, discharge (Q),
land flow (Qland), subsurface flow (ssf), saturated water depth (swd), and soil moisture in three
different layers

As we are assimilating near the outlet, the effect of assimilation in nearby gauges will mimic the effect
at the assimilation point, where the EnKF adds water to the system as seen in the hydrographs of
Emlichheim and other downstream gauges Lagel, Wehr Neuenhausen, Osterwald; While the effect of
DA is rather positive at downstream stations (during the flood peak, around 25th of June) that present a
similar situation with Emlichheim (the model underpredicts the flood peak), in other stations where the
model overpredicts (case of Ohne for example) or produces simulations very close to observations (Lage
I), the effect of outlet discharge DA is negative as the EnKF updated discharge values are further than
the simulated ones without DA (case of Wehr Neuenhaus).

For the more upstream gauges like Bilk, Ohne, and Gronau, spatially, we notice that water starts to be
removed from the system on the 25th of June (flood peak is registered earlier in the upstream stations).
On 29th, most of the upstream area presents negative values of the hydrological states, making sense as
the water is moving from upstream to downstream. Again, as data is assimilated only near the outlet,
the updated model discharge predictions do not follow necessarily follow the observations in the
upstream stations, resulting in little or no positive effect at all in improving the model discharge
predictions.

From the model states investigation, we notice first that the streamflow assimilation impacts not
only the overland state components but also considerable changes are detected in the subsurface
components. Typically, by adding water to the system near the outlet, this water is drained from the
most upstream locations as seen in the spatial presentation of the discharge Q. A negative difference in
the overland flow Qland is noticed around the time of the flood peak upstream, which reflects that the
model overestimates the Qland. At the same time, it is noticed that subsurface water flow is added in
the downstream part of the catchment, indicating that the model correctly redistributes the water in the
system when applying the EnKF. This is also noted in the saturated water depth (swd), which is
increased downstream near the flood peak time and shows negative values further upstream where the
flood peak has passed. The further we move from the flood peak time, the lower the saturated water
depth gets upstream, as seen on the column corresponding to the 29th of June. The effect is also noticed
in the uppermost soil moisture layer before and near the flood peak.

In contrast, significant changes are only noticed in the deeper layers later in time. Overall the
system state dynamics are captured accurately from the update with the EnKF; however, whether this
new distribution represents the “true” model states remains unknown as it is difficult to observe all
hydrological model states. Additionally, as mentioned above, EnKF capturing the state dynamics
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spatially does not necessarily lead to improved discharge predictions in the catchment. However, as was
already mentioned assimilating more observations will lead to better discharge estimates and therefore
better state estimates in the whole catchment.

However, as the goal of this study is to investigate the effect of DA in improving the state
estimates mainly near the outlet (the point of interest for operational flood forecasting in the
Netherlands), the experiment where we assimilated only near the outlet was deemed enough to answer
the respective research question, also considering the time and computational constraints.
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7 CONCLUSIONS AND RECOMMENDATIONS

This section provides a summary of the work reported in this study and the key findings that address
the research objectives. The limitations of the study's methodology and approach are also addressed.

Finally, conclusions and future research recommendations are outlined.
7.1  Summary

To explore the above, in the first part of this thesis, a precipitation data analysis was conducted

to give insight into the selected precipitation product quality and whether it is appropriate to be used in
the assimilation experiments. From this analysis, the precipitation product demonstrated a satisfactory
performance, confirmed by several metrics employed. For this reason, it was deemed appropriate to be
used as input forcing in the DA model. Additionally, utilizing information on the uncertainties associated
with the forcing product, the error model for the DA scheme was further selected. Finally, this work also
includes a short analysis of the observed and model discharges obtained from a deterministic historical
10-year simulation run in Delft-FEWS, which suggests that the model has a good overall performance.
However, peak flows are not always adequately captured.
Utilizing OpenDA, a generic data assimilation toolbox, two data assimilation experiments were
conducted using the same error model but differing in from the assimilation window (one short and one
longer experiment) and the number of observation locations assimilated (one location for the first
experiment and five locations for the second one). Regarding the uncertainty model, as the model is
considered to be perfect, no uncertainties related to the model error are considered when applying DA,
but on the contrary, the errors (mismatch between observations and model simulation) we attribute only
to the observations, the uncertainty value of which was selected based on literature suggestions, as well
as the results from the deterministic run and a sensitivity analysis carried out to enhance our
understanding of how the DA scheme works. For the input forcing uncertainty, a trial and error approach
was the most effective in selecting the optimal forcing uncertainty. Before the assimilation experiments,
reference simulations were selected for each experiment, using open-loop probabilistic simulations with
48 ensemble members. The run that produced the most reasonable ensemble spread closer to the
observations, and deterministic simulation was selected. The results confirmed that a longer assimilation
window would result in better estimates, especially in the later timesteps of the simulation.

Additionally, assimilating only in one location does not always result in improved predictions in
the other stations, as the assimilation effect will depend on the distance of each station from the
assimilation location and the flow magnitude at each station. However, when multiple streamflow
observations were assimilated, the assimilation effect results were positive at every checked location.
Lastly, the hydrological state dynamics when updating with the EnKF were investigated, and results
suggest that the discharge assimilation has a positive effect in capturing the system dynamics of the
wflow_sbm model; however, this is mainly a qualitative assessment, as it is challenging to derive
quantitative judgment while we don't know the 'true' system states. To conclude, streamflow assimilation
was considered to positively affect the discharge predictions and capture the system state dynamics.
However, this study's several limitations are elaborated in the following section, and future research
directions are given.
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7.2  Limitations

This study's approach and methodology have several shortcomings. First, there are limitations

connected with the study's assumptions, such as the assumption of a faultless hydrological model and
initial conditions. However, incorporating the unaccounted-for uncertainties into this study will
undoubtedly result in more accurate estimations, allowing the DA impact on the discharge predictions
to be judged accurately.
Only the precipitation forcing input in the DA experimental setup is assumed to be subject to error,
whereas the potential evapotranspiration and temperature forcing uncertainties are disregarded. Another
constraint is the precipitation uncertainty characterization. In this study, error characterizations of
precipitation forcing in the DA system are merely multiplicative errors applied to precipitation fields.
As rainfall uncertainty is the primary source of spread among ensembles, which is required for
incorporating data from observations to correct model predictions, and precipitation fields may contain
both magnitude and position errors, other statistically more reliable methods described in Section 2.2
can be used. Despite the radar product being calibrated with observational rainfall data, it presents
inaccuracies, and radar bias correction techniques can be applied. Correctly accounting for observation
uncertainty in data assimilation is also a shortcoming of this study, as the observation uncertainty is
assessed within a literature-suggested range, and an ad-hoc error selection method is employed. Other
limitations include the errors associated with the model parameters, which are assumed to be ideal in
this work.

Lastly, the high computational time required to conduct the experiments is a significant
shortcoming of this study. The high computational times could stem from the OpenDA assimilation tool
itself, the fact that we work with a distributed model, and the filtering algorithm choice. While OpenDA
is a very flexible and simple-to-configure tool, when used with wflow_sbm, it requires exceptionally
long computing durations, which rise dramatically (up to 12 hours) in runs with a longer assimilation
time (61 days), a greater number of ensembles (more than eight ensembles), and more discharge
observation location’s data being assimilated (5 assimilation locations). Experiments with a 31-day
assimilation window, a single assimilation location, and eight ensemble members necessitate
considerable computational time (two to three hours) and capacity. This, together with the limited
available time for this research, has reduced the number and duration of the DA experiments presented
in this work. A more time-efficient tool must be developed to be utilized in operational forecasting for
catchments that respond rapidly, such as the Geul, for which the DA was not performed in this study
due to limitations of the model and data available.

7.3  Conclusions

The primary objective of this study was to investigate the effects of assimilating streamflow data
in the model predictions in the Vecht river catchment. Thus, this work aimed to enhance the
understanding of assimilation in other hydrological states of the wflow_sbm hydrological model. As
several uncertainties are to be considered in the DA process, as elaborated throughout this study, this
thesis included some preliminary analysis to account for the related uncertainties. Therefore, a
precipitation data analysis was carried out for the selected gridded rainfall product (Radolan), comparing
at points with the observational dataset to account for the model forcing uncertainty. Then, the ability
of the model to capture the observed discharges by conducting historical simulation runs was

investigated. However, the model parameter uncertainties were ignored, and the model was assumed
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perfect when carrying out data assimilation experiments. Next, effects in the discharge predictions were
reported, and finally, implications on other model states and whether the assimilation filter can capture
a distributed hydrological model state dynamics were addressed. In the conclusion of this thesis, the
research questions identified in Section 1.3 are revisited.

- What is the effect of assimilating streamflow observations with the wflow_sbm distributed

hydrological model on the streamflow predictions for the Vecht river using the EnKF? What is
the influence of the assimilation window length and the number of assimilation locations?
Results from this work indicate a positive effect on streamflow model predictions. However, the
magnitude of improvement is sensitive to the error model selected for the experiments, and it
varies depending on the amount of assimilated streamflow observations and the length of the
assimilation window. By comparing the outcomes of experiment 1 and experiment 2, it can be
concluded that assimilating observations near the outlet and other interior gauges will result in
better discharge predictions in the entire catchment, while when assimilating only near the
outlet, the EnKF application improves predictions only in a particular station, particularly in
stations closer to the assimilation location, and stations where the wflow sbm model follows
the same trend (overpredicting or underpredicting flow peaks) as the assimilation station. For
example, there is a 21.05% improvement in the model predictions at Emlichheim in the first
experiment after DA. However, an adverse effect is noticed in other stations (e.g., Bilk, Ohne).
The first experiment showed that the EnKF implementation does not solve the issue of a too
steap rising limp and a peak flow predicted too early.
In the second experiment, the predictions are improved with 3.82% (or 8 m3/s improvements in
absolute error term) for the maximum flood peak. Therefore, it can be concluded that a longer
assimilation window and assimilation of multiple observations will considerably improve the
discharge predictions. However, this conclusion is derived from a limited number of
experiments, and for quantitatively assessing the potential of the EnKF for broader applications,
more investigations are needed.

- What effect does discharge data assimilation have on other hydrological model states and fluxes,
given that we use a model in which water is routed laterally via subsurface and surface water,
whereas previous studies used a model in which water was routed only via surface water?
From the results presented in section 6.3.4, it is concluded that the discharge DA effect, as
expected, is reflected in all states that demonstrate a considerable correlation with the model
discharges. The model is able to properly redistribute the water in the system when updating
with the EnKF. Changes are noticed in the subsurface and overland flows corresponding to the
theoretical flood response of the system, so for example, differences are detected during the
flood peak time in the uppermost soil moisture layer of the model, while these differences are
reflected in the deeper soil moisture layers later in time. Overall, it is concluded that the
subsurface and surface water changes can be captured appropriately. However, assessing the
effect on individual states at particular points is difficult, as we lack information on the actual
values of various states.

- What is the influence of the error model specification of the input forcing and observations on
the discharge predictions with the wflow_sbm model?

The outputs of the distributed hydrological model used in this work present a high sensitivity in

the error model specifications chosen for the assimilation framework, as was noted in the
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preliminary analysis carried out, where even for a 10% change in the uncertainty specification
(particularly for precipitation), significant impact is noticed in the predicted flows. For this
reason, an appropriate error selection of the precipitation uncertainty is crucial. In this work, the
combination of uncertainties that produced the best results for both experiments is a
precipitation error factor of 2.5 and a 0.1 factor for the observation error. However, as other
uncertainties are neglected, these values need to be revised when including uncertainties related
to the model parameters and initial conditions. The model might produce unrealistic flow
predictions (and other variables) when compensating for the neglected errors.

7.4 Recommendations

During the production of this study, characteristics of suggestions for future research were
identified, relating to the limitations and findings presented; as a result, the following recommendations
for further research are presented:

1. Given the lack of information on the "best" rainfall data source and given that the
precipitation uncertainty propagates throughout the analysis, it is recommended that
statistically more reliable techniques, like conditional simulation, are used to assess the
precipitation error estimates. Additionally, before uncertainty assessment of the radar
precipitation product, applying bias adjustment of the radar forcing data is considered
appropriate.

2. While a sensitivity analysis was done to investigate which combination of spatial correlation
and uncertainties will result in the most optimal simulation with DA (the one that brings the
ensemble closer to the observations), the values chosen for the spatial correlation of
precipitation were based on literature suggestion. Therefore, an analysis of the spatial
correlation structure of precipitation at the local scale should be conducted to obtain better
results.

3. The effect of consideration of other uncertainties, like the model structure uncertainty,
initial condition uncertainty, etc., should be explored.

4. More experiments with a larger assimilation window and additional assimilated gauges
should be conducted to investigate DA's effects further. While performing those
experiments with the current OpenDA version is computationally ineffective, further
research should be conducted on how to produce results more effectively.

5. Additional experiments with EnKF DA can be conducted to derive ensemble forecasts to
be evaluated based on lead times, using the verification measures mentioned in Section
2.3.2.

6. In view of the estimated positive results of streamflow DA at the Vecht river catchment, it
is recommended to develop a similar assimilation setup for the Geul river basin, following
the work that is already carried out for the Geul in this study, as time and computational
challenges did not allow for the implementation of additional DA experiments. A
comparison of the effectiveness of EnKF DA for the two different catchments can then be
made. Furthermore, for the Geul, other filtering algorithms like the Asynchronous Ensemble
Kalman Filter (explained in section 2.1) are recommended to be explored, as it is a

promising one regarding reduced assimilation time.
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9 APPENDICES

Appendix A. Streamflow gauge station locations
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Table 18: Overview of the streamflow gauge station in the Vecht river basin

Map ID 1 2 3 4 5 6 7
Station Emlichheim Wehr- Lage | Osterwald Gronau  Ohne Bilk
Name Neuenhaus
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Table 19: Overview of the streamflow gauge station in the Geul river basin

Map ID 1 2 3 4 5
Station Meerssen Schin op Geul =~ Eyserbeek Eys  Selzerbeek  Selzerbeek,
Name Partij molentak

Map ID 6 7 8 9 10
Station Gulp, Hommerich Cottessen Sippenake Kelmis

Name Azijnfabrik n
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Appendix B. Precipitation data analysis

B.1 DWD rain gauge observations VS E-OBS gridded dataset
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Station 15927, NSE=0.97
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Appendix C. Simulations with DA

C.1 Sensitivity analysis of the simulations with DA, for a run with 8 ensemble members, with
different values of uncertainties for forcing and observations
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C.2 Discharge prediction results with DA in different station locations — experiment 1
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C.3 Discharge prediction results with DA in different station locations — experiment 2
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