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Abstract. Rainfall erosivity values are required for soil erosion prediction. To calculate the mean annual rain-
fall erosivity (R), long-term high-resolution observed rainfall data are required, which are often not available. To
overcome the issue of limited data availability in space and time, four methods were employed and evaluated:
direct regionalisation ofR, regionalisation of 5 min rainfall, disaggregation of daily rainfall into 5 min time steps,
and a regionalised stochastic rainfall model. The impact of station density is considered for each of the methods.
The study is carried out using 159 recording and 150 non-recording (daily) rainfall stations in and around the
federal state of Lower Saxony, Germany. In addition, the minimum record length necessary to adequately esti-
mate R was investigated. Results show that the direct regionalisation of mean annual erosivity is best in terms
of both relative bias and relative root mean square error (RMSE), followed by the regionalisation of the 5 min
rainfall data, which yields better results than the rainfall generation models, namely an alternating renewal model
(ARM) and a multiplicative cascade model. However, a key advantage of using regionalised rainfall models is
the ability to generate time series that can be used for the estimation of the erosive event characteristics. This is
not possible if regionalising only R. Using the stochastic ARM, it was assessed that more than 60 years of data
are needed in most cases to reach a stable estimate of annual rainfall erosivity. Moreover, the temporal resolution
of measuring devices was found to have a significant effect on R, with coarser temporal resolution leading to a
higher relative bias.

1 Introduction

Intense soil erosion has a significant impact on the environ-
ment, for example presenting a major threat for agricultural
production or leading to increased sedimentation and pol-
lution in rivers, which also affects aquatic organisms. Soil
erosion modelling can be performed to detect critical parts
of the landscape and design suitable countermeasures to re-

duce soil losses. One of the most frequently applied models
for soil erosion modelling is the Universal Soil Loss Equa-
tion (USLE) and its successor the Revised Universal Soil
Loss Equation (RUSLE) (e.g. Renard et al., 1997). In the
scope of the RUSLE model, soil erosion is described by six
factors, one of which is the rainfall erosivity factor R (in
MJmmha−1 h−1, Renard et al., 1997). Rainfall erosivity is
often characterised by large spatial and temporal variability
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(e.g. Bezak et al., 2020, 2021a, b, c; Panagos et al., 2016,
2017; Petek et al., 2018), meaning that its estimation is not
straightforward and requires adequate temporal and spatial
data resolution.

In order to obtain robust rainfall erosivity values, high-
resolution observed rainfall data are needed, in time ide-
ally with a 1 or 5 min resolution (Dunkerley, 2019), and in
space ideally to represent the spatial heterogeneity (Peleg et
al., 2021). However, rainfall data at this resolution are often
only available for shorter periods of observation (e.g. 10 or
20 years) or not at all. A solution to overcome this shortcom-
ing is the use of stochastic rainfall models that allow the gen-
eration of long time series of arbitrary length. Additionally,
these models can generate time series for ungauged locations
through regionalisation of model parameters. In some cases,
gridded rainfall erosivity data are used as input to the USLE-
type soil erosion models. In terms of spatial description of
the rainfall erosivity, most often station-based data are inter-
polated (e.g. Panagos et al., 2017) while satellite-based data
could in the future provide useful estimates of gridded rain-
fall erosivity (e.g. Bezak et al., 2022). However, due to the
station-based approach of the USLE, the generation of spatial
rainfall is not required but would be useful for more sophisti-
cated approaches to estimate erosion (Eekhout et al., 2021).
A few studies have investigated the possibility of applying
stochastic precipitation models to generate rainfall time se-
ries to then estimate rainfall erosivity (e.g. Jebari et al., 2012;
Lobo et al., 2015; de Oliveira et al., 2018; Haas et al., 2018).
Methods used to model rainfall include cluster-based mod-
els (e.g. Onof et al., 2000; Onof and Wang, 2020), cascade
models (e.g. Molnar and Burlando, 2005; Pohle et al., 2018;
Müller and Haberlandt, 2018), method-of-fragments mod-
els (e.g. Breinl and Di Baldassarre, 2019), or alternating re-
newal models (e.g. Callau Poduje and Haberlandt, 2017) or
as part of weather generators (Peleg et al., 2017). The pa-
rameters of these methods are estimated based on observa-
tions, and the complexity of the models generally depends
on the target temporal resolution. Thus, most studies are fo-
cused on daily data. For example, CLImate GENerator (CLI-
GEN) was applied to obtain daily rainfall estimates and cal-
culate rainfall erosivity using daily data (e.g. de Oliveira et
al., 2018; Lobo et al., 2015; Wang et al., 2018). Shortcom-
ings such as sensitivity to the input parameters have been
reported in the literature (e.g. Meyer et al., 2008; Haas et
al., 2018). On the other hand, temporal high-resolution time
series (i.e. 5 min) are less often generated using stochastic
rainfall models, although in recent years advancements have
been made (e.g. Haberlandt et al., 2008; Vandenberghe et al.,
2011; Vernieuwe et al., 2015; Callau Poduje and Haberlandt,
2017; Müller-Thomy, 2020).

Thus, a few studies (e.g. De Oliveira et al., 2018; Haas
et al., 2018) have investigated if stochastic rainfall models
are able to correctly predict rainfall erosivity patterns at spe-
cific locations. In the case that a stochastic rainfall model is
able to mimic the rainfall erosivity characteristics, generated

long-term high-resolution rainfall time series should then al-
low a robust estimation of annual and even monthly erosivity
patterns. Similarly, a limited number of studies (e.g. Angulo-
Martinez et al., 2009) have investigated performance of dif-
ferent interpolation techniques related to the mapping of rain-
fall erosivity.

The main aim of this study is to evaluate and compare dif-
ferent rainfall generators and regionalisation approaches in
order to obtain either directly or indirectly annual rainfall
erosivity estimates for ungauged locations. Given a lack of
high-resolution rainfall time series, the research question is
whether these tested methods can adequately reproduce ob-
served annual rainfall. As a follow-up research question, we
investigate the performance of tested methods in terms of
specific erosive event characteristics. This information is not
directly needed as input to the USLE-type models but is often
studied and investigated in rainfall erosivity studies. Finally,
given the existence of a high-resolution rainfall time series,
we also investigated how long these time series should be
in order to obtain stable site annual rainfall erosivity. Hence,
this information is relevant both for the soil erosion model
applications using USLE-type models and for the studies in-
vestigating erosive event characteristics.

All tests were performed via leave-one-out cross valida-
tion, as the premise of this study is that high-resolution time
series are not widely available. Additionally, the effect of sta-
tion density on the regionalisation performance was assessed
by performing each test with five different station counts
(20 %, 40 %, 60 %, 80 %, and 100 % of observed stations).
To minimise the sampling uncertainty, 20 realisations of each
test at each station density were performed.

2 Data and study area

High-resolution observed rainfall data for 159 stations
bounded by the rectangle 7 to 12◦ E and 51 to 54◦ N (Fig. 1),
centred over the German federal state of Lower Saxony,
were acquired from the German Weather Service (DWD).
The 1 min source time series, from a combination of tipping
bucket and later drop counter measurements, were aggre-
gated to 5 min for use within this project. All data used for
the project are restricted to the 10-year period 2007–2016
to maximise the data availability across all stations, as all
159 stations have at least 98 % data availability for this pe-
riod. The study area is dominated by lowland terrain, with
the only mountains of significance being the southeast-lying
Harz mountain range. The region is predominantly classi-
fied as having a temperate oceanic (Cfb) climate accord-
ing to Köppen–Geiger (Kottek et al., 2006). The far eastern
portion of the study area is categorised as temperate con-
tinental (Dfb) and the Harz mountain range as cool conti-
nental (Dfc). Figure 2 displays the long-term seasonal rain-
fall and temperature variability averaged over the German
federal state of Lower Saxony. Annual rainfall varies from
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Figure 1. Location of all recording stations (N = 159). The bar plots indicate the observed annual precipitation volume (blue) and erosivity
factor (red).

Figure 2. Long-term climate (1881–2019) averaged across the Ger-
man federal state of Lower Saxony that is investigated in the scope
of this study. Source: German Weather Service (DWD) Climate
Data Center (CDC) (CDC, 2020).

950 mm in the Harz mountain range to under 400 mm in
lower-lying areas east of the study area. As can be seen from
Figs. 1 and 2, there is for most locations no significant differ-
ence between summer and winter precipitation in the study
area. In terms of monthly rainfall erosivity, higher values (i.e.
around 100 MJmm ha−1 h−1 month−1) can be seen for sum-
mer followed by spring and autumn, whilst the lowest rain-
fall erosivity values could be seen for winter (i.e. less than
20–30 MJmmha−1 h−1 month−1). The results from a study
conducted by Ballabio et al. (2017) are in accordance to the
results of this study.

3 Methods

In this study, four different methods to calculate annual rain-
fall erosivity (R) for ungauged sites were applied (Fig. 3).
The first and simplest method is the direct regionalisation of
observed mean annual rainfall erosivity (Direct-R method).

The other three methods all generate rainfall time series first,
from which mean annual rainfall erosivity is subsequently
calculated. The second method is the regionalisation of the
observed 5 min rainfall time series (Direct-P method). The
final two methods are stochastic rainfall models – one be-
ing a regionalised disaggregation model using regionalised
daily rainfall as its source (method Disagg) (Müller-Thomy,
2020) and the other a regionalised alternating renewal model
(method ARM) (Callau Poduje and Haberlandt, 2017). De-
tailed descriptions of the applied methods are provided in
Sect. 3.2 and 3.3 while Sect. 3.1 provides details about the
rainfall erosivity calculation.

3.1 Rainfall erosivity

Rainfall erosivity is one of the factors that has the highest im-
pact on soil erosion rates. Rainfall erosivity is characterised
by multiple properties of rainfall events such as the kinetic
energy of raindrops, rainfall intensity, and rainfall duration.
In order to calculate annual rainfall erosivity for a selected
time span, the following equation proposed by Renard et al.
(1997) can be used:

R =

∑
nE · I30

M
, (1)

where R is rainfall erosivity (MJmmha−1 h−1), I30 the
maximum 30 min rainfall intensity for a specific rainfall
event (mmh−1), E the kinetic energy of the rainfall event
(MJha−1), n the total number of erosive events, and M the
time span (years). Equation (2) is used to derive the kinetic
energy of the rainfall event:
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Figure 3. Overview of the estimation of the annual rainfall erosivity (R) including all applied methods (dashed boxes) and data sets (solid
boxes, italics represent input data sets) (“TS” shows rainfall time series; “*” indicates data sets affected by the station density scenarios).

E = eB · I ·1t, (2)

where eB is the specific kinetic energy (MJha−1 mm−1), I
the rainfall intensity (mmh−1) for the event, and 1t the time
interval (h). Various equations for calculation of eB were de-
veloped for different parts of the world, where most often
high-frequency measurements using optical disdrometers are
used to derive the eB−E relationship (e.g. Petan et al., 2010).
One of the most frequently and globally used equations (e.g.
Panagos et al., 2015, 2017) was proposed by Brown and Fos-
ter (1987):

eB = 0.29 · [1− 0.72 · exp(−0.05 · I )]. (3)

This equation is also mentioned in the RUSLE Handbook
(Renard et al., 1997) and is regarded as the standard method
to estimate soil erosion using the RUSLE approach. Addi-
tionally, the equation has already been applied several times
to similar climatic conditions (e.g. Panagos et al., 2015) and
yielded meaningful results. This equation was used in the
present study in order to calculate specific kinetic energy.
Equation (3) is valid for rainfall intensities ranging between
0 and 250 mmh−1.

Erosive rainfall events are defined according to the RUSLE
methodology (Renard et al., 1997). A rainfall event is con-
sidered erosive if the total volume exceeds 12.7 mm of rain
or if the maximum volume in 15 min is more than 6.35 mm.
Here a 6 h period without rain is used in order to separate
two consecutive erosive rainfall events. The monthly and an-
nual rainfall erosivity values are then calculated based on the
rainfall erosivity of all erosive events.

3.2 Direct regionalisation methods

3.2.1 Direct-R method: direct regionalisation of mean
annual rainfall erosivity R

The direct interpolation of erosivity was carried out using
geostatistical methods (see e.g. textbooks from Isaaks and
Srivastava, 1990, or Goovaerts, 1997). The spatial depen-
dence of R is modelled using an isotropic spherical vari-
ogram model:

γ (h)=c0+ c

(
3
2
h

a
−

1
2
h3

a

)
if h≤ a, otherwise γ (h)= c0+ c, (4)

where c is 0.5, c0 is 0.3, and a is 30 000 m. For interpolation,
ordinary kriging (OK) and external drift kriging (EDK) are
applied. While OK assumes spatial stationarity, EDK relaxes
the intrinsic hypothesis regarding the constant mean E and
assumes a linear relationship between the mean of the target
variable Z and one or more additional variables Y :

E[Z(u)|Y (u)] = a+
n∑
i=1

biYi(u). (5)

The coefficients a and bi need not be known explicitly, but
they are considered in building the kriging system. The addi-
tional variables Yi need to be provided for all points with
observed erosivity and for all unobserved points to be in-
terpolated, usually on a raster. Here, the following addi-
tional variables are used in the analyses: daily mean rain-
fall (Pmean), maximum daily rainfall (Pmax), the 90 and 99 %
quantiles of daily rainfall (Pq90, Pq99), and the yearly wet
fractions of days with rainfall higher than 12.7 mm (based
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on the RUSLE methodology; Renard et al., 1997) and 1 mm
thresholds (wfd12, wfd1). These variables are extracted from
regionalised daily data in a spatial resolution of 1 km2 (NL-
WKN, 2019) and are calculated as long-term averages from
the period 2007–2016. The interpolation uses a minimum
of 8 neighbours and a maximum of 12 neighbours within
a radius of 300 km. The R statistical software (R core team,
2015) with the package “gstat” (Pebesma, 2004) is employed
for the calculations. It should be noted that some other vari-
ables could have been selected such as mean annual pre-
cipitation, which is often used to estimate the mean annual
rainfall erosivity in data-sparse regions. However, since this
study uses high-resolution data, we focused on specific pre-
cipitation characteristics that could be obtained from these
high-resolution data.

3.2.2 Direct-P method: regionalisation of 5 min rainfall

A second approach for the regionalisation of the annual R
is to estimate the 5 min rainfall time series for unobserved
locations based on the information of nearby-measured rain-
fall time series. In this study, the nearest-neighbour approach
(NN) was used for the regionalisation of the 5 min rainfall
time series from 2007–2016. This technique, also known as
the Thiessen polygon method (Thiessen, 1911), is a simple
approach which assigns for each unobserved point the ob-
served rainfall time series of the closest available rain gauge.
Despite this being a basic interpolation method, a prior inves-
tigation of different interpolation techniques (nearest neigh-
bour, inverse distance, and ordinary kriging) led to the con-
clusion that this technique maintains the best temporal struc-
ture of rainfall at the 5 min timescale and yields the lowest
error for the calculation of erosivity. One reason for the su-
periority of NN compared to the other interpolation methods
might be that NN is the only method which does not smooth
extremes, which is important for the estimation of erosive
events.

3.3 Stochastic rainfall models

3.3.1 ARM method: an alternating renewal rainfall
model

Stochastic rainfall models allow for the generation of rain-
fall time series of arbitrary length, including for unobserved
locations through regionalisation. For this study, the alternat-
ing renewal model (ARM) based on the theory of renewal
processes was used to generate 5 min synthetic rainfall time
series. In this model, rainfall is described as a series of in-
dependent alternating wet and dry spells, described by the
three variables: wet spell amount (WSA), wet spell dura-
tion (WSD), and dry spell duration (DSD) (Fig. 4). Proba-
bility distributions were fitted to observations of these vari-
ables using the method of L-moments, with observed rainfall
events being limited by a minimum WSA (1 mm) and DSD

Figure 4. Schematic of the external structure of the ARM model.
The black boxes describe rainfall events derived from observations.

(60 min). Synthetic rainfall time series were then generated
by producing random variates of these distributions.

Additionally, the temporal distribution of rainfall within a
wet spell is described by a double exponential function con-
ditioned on the wet spell time to peak (WSTP – modelled
using a uniform distribution), wet spell peak intensity (WSPI
– modelled using a copula; see below), and WSA (Fig. 5).
Full details of the model can be found in Callau Poduje and
Haberlandt (2017), with the following alterations which have
been found to provide a better model performance, especially
for regionalisation:

– a two-parameter Khoudraji–Gumbel copula describes
the dependence between WSA and WSD,

– a two-parameter Tawn copula describes the dependence
between WSD and the ratio WSPI : WSA,

– the three-parameter Weibull distribution is used instead
of the four-parameter kappa distribution for the vari-
ables DSD and WSA, being more robust in a region-
alisation setting.

Both copulas were fitted using the maximum pseudo-
likelihood method. In total, the model consists of 19 param-
eters, fitted separately for summer (April–September) and
winter (October–March).

3.3.2 Disagg method: cascade model

Another possibility to generate high-resolution rainfall time
series is to disaggregate daily time series, which generally
exist for longer time periods and with higher station densi-
ties. For this study the micro-canonical cascade model af-
ter Müller-Thomy (2019, 2020) was applied due to its per-
formance in previous studies (e.g. Müller and Haberlandt,
2015, 2018). The general cascade model scheme of disag-
gregating one coarse time step into “b” finer time steps is
illustrated in Fig. 6. From daily rainfall amounts three time
steps with 8 h duration are generated (b = 3). For all further
disaggregation steps b = 2 is applied, resulting in temporal
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Figure 5. Internal structure of ARM model according to the Callau
Poduje and Haberlandt (2017).

Figure 6. General scheme of the cascade model for the first two
disaggregation steps with exemplary rainfall amounts for a daily
total of 12 mm (blue boxes show wet time steps).

resolutions of1t = {4h,2h,1h,30min,15min,7.5min}. To
achieve1t = 5 min, a linear transformation is applied. More
precisely, rainfall amounts of the 1t = 7.5 min level are dis-
tributed uniformly on 2.5 min time steps, which are subse-
quently aggregated to 5 min time steps. The rainfall amount
is conserved exactly in each disaggregation step. For a de-
tailed description of the cascade model, the reader is referred
to the description of the preceding cascade model in Müller-
Thomy (2020).

The cascade model parameters are estimated by the aggre-
gation of observed 5 min time series of the recording stations
available in each density scenario (no parameter calibration
or optimisation was carried out). For the daily time series
serving as a starting point for the disaggregation, the aggre-
gated 5 min time series of all 159 stations are used, inde-
pendent of the applied density scenario. To investigate how
suitable the disaggregation of daily information is for unob-
served locations and a regionalisation of the daily precipita-
tion is done prior to the application of the cascade model.
Here, an ordinary kriging approach (OK) was used for the
regionalisation of daily rainfall time series from 2007–2016.
The interpolation uses an isotropic exponential variogram as
in Eq. (6), a minimum of 4 neighbours and a maximum of 12
neighbours within a radius of 150 km.

γ (h)= c0+ c

[
1− exp

(
−
h

a

)]
, (6)

where c0 is 0.4, c is 1.5, and a is 186 280 m.

3.4 Regionalisation schemes and station selection

In order to adequately test the performance of the differ-
ent methods, all regionalisations were performed in a cross-
validation mode at varying station densities. Five station den-
sity scenarios were chosen: 20 % (N = 32), 40 % (N = 64),
60 % (N = 96), 80 % (N = 128), and 100 % (N = 159) of
the total available station count. Stations were selected at ran-
dom and are consistent across the different testing methods
presented above. Important to note is that the cross valida-
tion is only performed on the stations chosen at the 20 %
level (N = 32) – the higher densities only add further supple-
mentary stations available for the regionalisation, with the as-
sumption that the regionalisation performance will improve
at a higher available station count. Furthermore, 20 realisa-
tions were performed for each density scenario to minimise
the influence of station selection on the results. This scheme
is illustrated graphically in Fig. 7.

3.5 Effect of time series length on the calculation or
mean annual R

One further research question of interest is how long a rain-
fall time series must be in order to achieve a stable (i.e. ro-
bust) result of mean annual rainfall erosivity. The importance
of such a research question lies in the fact that rainfall series
used to calculate annual erosivity are often of limited length.
Too short time series could lead to uncertain estimations of
rainfall erosivity, which could affect the estimated soil ero-
sion (i.e. under- or overestimation).

Using the alternating renewal rainfall model described
in Sect. 3.3.1, we investigated how many years of data
are needed in order to obtain stable estimations of the an-
nual rainfall erosivity. For this purpose, 18 stations with the
longest observation time series length (mean = 22 years)
were selected for a more robust model fitting. For each sta-
tion, the ARM model described in Sect. 3.3.1 was fitted. Af-
terwards, 200 years of synthetic rainfall time series were gen-
erated 50 times for all 18 stations. The effect of time series
length was investigated by calculating mean annual rainfall
erosivity for each station and for each realisation using, sep-
arately, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140,
160, 180, and 200 years of data. Results within ±20 % of
the mean annual erosivity calculated for 200 years were con-
sidered stable. The 20 % threshold value was selected after
checking the variability in the mean annual rainfall erosivity
for specific stations and after comparing differences in mean
annual rainfall erosivity values among stations. Hence, for
most of the stations the maximum differences in the annual
rainfall erosivity for specific years exceeded 20 % while ap-
proximately one-half of the years the annual rainfall erosivity
values were within the 20 % range.
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Figure 7. Five different station density scenarios shown for two realisations. The red stations are used for the cross validation for all station
densities. The additional stations (blue) provide supplementary information for the regionalisation, with darker shades added to previous
scenarios.

3.6 Evaluation criteria

To assess the relative performance of the four different meth-
ods (Fig. 3), three different evaluation criteria were chosen.
The first is the Pearson correlation coefficient rxy between
the annual rainfall erosivity calculated from observed rain-
fall and the estimated mean annual erosivity, i.e. regionalised
by the different methods, at a given station density scenario
across all realisations and the 32 reference stations. It is
worth remembering that this measure is an indication of lin-
ear correlation only. The second is the relative root mean
square error (RMSE) of the mean annual rainfall erosivity
for a given station density scenario across all realisations and
stations, given by Eq. (7):

RMSE=

√√√√ 1
N

N∑
n=1

[
y− x

x

]2

, (7)

where x refers to mean annual rainfall erosivity estimated
from observations, y is the estimated mean annual rainfall
erosivity estimated by the different methods proposed in this
work, and N is the number of stations. The third is the me-
dian relative bias rBmed of the mean annual erosivity. For a
given station density scenario the relative bias rB is calcu-
lated over all 32 stations for one realisation, and the median
relative Bias rBmed is provided as a summarising result (re-
ferred to as relative bias in the following):

rBmed =median
(
y− x

x

)
. (8)

4 Results and discussion

4.1 Mean annual erosivity R

The main focus of this study was to evaluate the performance
of the four different tested methods in reproducing observed
mean annual erosivity as input to the USLE-type models. It
is the most relevant attribute from the perspective of the soil
erosion modelling community. For the direct regionalisation
of erosivity (Direct-R), EDK with mean annual precipitation
(Pmean) as external drift was found to provide the best perfor-
mance. Direct regionalisation provides the best results over-
all, in terms of both accuracy and precision. The Pearson cor-
relation (Fig. 8) by this method is larger than for the other
three methods, which show more or less the same result. Its
root mean square error is also lower than that of the other
methods (Fig. 8). The rBmed is the only performance crite-
ria where this method is not clearly better (Fig. 8). In terms
of rBmed the Direct-R method is followed by Direct-P. ARM
and Disagg in most cases yield relative bias larger than 10 %
and 20 %, respectively. In terms of relative RMSE and Pear-
son correlation, the ARM and Disagg methods performed
relatively similarly. The median result over all realisations
showed slightly better results for the direct regionalisation of
rainfall (Direct-P) compared to stochastic rainfall models, al-
though the range of results is greater than for Direct-R. The
disaggregation model performed worse than the other meth-
ods, with a > 20 % underestimation of mean annual erosiv-
ity. However, the Disagg results were found to be sensitive to
the applied “measuring resolution” of the generated time se-
ries (please see Fig. S1 in the Supplement for details), which
could be represented better by simple modifications (Müller-
Thomy, 2020).
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Figure 8. Pearson’s correlation coefficient, relative bias, and relative RMSE results for the four tested methods. Box plots show the relevant
statistic for the 20 realisations (N = 20) at each density scenario (e.g. D20 corresponds to the 20 % station density scenario).

With increasing station density, the median result was gen-
erally improved, in particular for the Pearson correlation
(Fig. 8). This is less noticeable for rBmed, as bias likely indi-
cates the inherent ability of the underlying method to repli-
cate the mean annual R (Fig. 8). Moreover, it seems that for
ARM and Direct-P the results change greatly between real-
isations (i.e. larger spread of the results), meaning that the
station setting is more decisive, with Direct-P being the most
affected. The Direct-R and Disagg methods seem to be more
robust in terms of station setting, which indicates their usage
for regions with low station densities. Thus, it seems that for
areas similar to that of Lower Saxony (i.e. relatively flat ar-
eas with small changes in erosivity), the Direct-R method is
preferred in case one needs to estimate the rainfall erosivity
for the ungauged locations. The application of this method
is also the simplest of the four methods (Fig. 3), especially
when compared to the ARM and Disagg methods, since these
two methods require development of stochastic rainfall mod-
els and estimation of the model parameters. Thus, in terms
of mean annual rainfall erosivity, the use of stochastic rain-

fall models did not provide an improvement of the results in
terms of performance in space (Fig. 8).

In terms of the number of stations needed to provide good
estimates of rainfall erosivity for the ungauged locations, it
is clear that higher station density yields better results, which
was expected (Fig. 8). Thus, Direct-R showed decreasing
performance with decreasing station density, D100> D80>
D60> D40> D20 (Fig. 8), with somewhat diminishing im-
provements in performance above D80. Similar conclusions
can be made for the Direct-P method while for the ARM
and Disagg this relationship was not so evident for the rBmed
and RMSE (Fig. 8). Therefore, even for topographically rel-
atively homogeneous areas (compared to for example alpine
area) such as Lower Saxony, the accuracy of rainfall erosiv-
ity maps greatly depends on the number of stations used for
the interpolation. Hence, it is clear that estimation of rain-
fall erosivity for ungauged areas is in all cases exposed to
some degree of bias due to the interpolation (Fig. 8). Even in
cases where the density of stations is high (e.g. D80 or D100
scenarios), there was a slight bias (few percentage points) in
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estimation of the rainfall erosivity for ungauged locations us-
ing the Direct-R and Direct-P methods while for ARM and
the rainfall disaggregation model the median relative bias
is larger than 10 % and 20 %, respectively (Fig. 8). Addi-
tionally, it should be assumed that the estimation bias for
ungauged locations within topographically complex terrain
would be even higher. Therefore, these results indicate that
the density of gauging stations should be as high as possible
in order to obtain optimal rainfall erosivity estimates.

4.2 Erosive event characteristics

Although the main focus of the study was the calculation of
the mean annual erosivity R, in some specific applications
more details about the rainfall erosivity at a location might
be required, and characteristics of erosive events are often
studied and compared (e.g. Bezak et al., 2021b). This infor-
mation is not directly used as input to the USLE-type mod-
els; however, studies that investigate changes in erosivity pat-
terns in time (i.e. climate change studies) might be interested
in changes in the number of erosive events or erosive event
characteristics. In such a case, the Direct-R method cannot
be used since this method is only able to provide estimates of
the mean annual rainfall erosivity and does not provide a time
series of erosive events. Naturally, a similar procedure as in
the case for Direct-R (Sect. 3.2.1) could be used for any other
variable of interest (e.g. number of erosive events, mean du-
ration of the erosive events). However, the EDK setup used
for mean annual R is unlikely to be optimal for other vari-
ables, which means that an optimal EDK setup would need
to be investigated for each variable of interest separately and
thus could be considered relatively time consuming.

However, three of the four methods presented in this study,
namely Direct-P, ARM, and Disagg, are able to reproduce
erosive events themselves from which the mean annual R is
calculated. How well the three methods reproduce erosive
event characteristics is explored in this section, and the re-
sults are presented in Table 1. Figure 9 displays the median
relative bias of different erosive event variables. The mean
annual event count and precipitation sum are best represented
by the Direct-P method. Whereas the median error is close to
zero, the range of errors is well over 100 % when one consid-
ers outliers. The Disagg method represented the event count
well but underestimates the annual volume slightly, whereas
the ARM method underestimated both the annual count and
volume (Fig. 9). Performance improved slightly for all meth-
ods with increasing station density (not shown).

For both the mean event duration and volume (Fig. 9), the
results again show that the Direct-P method was the most
efficient. The Disagg method significantly overestimated the
event duration and at the same time underestimated the event
volume. However, in the case of using the Disagg method
the station density showed less of an effect on performance
compared to the other methods (not shown here). An overes-
timation of the erosive event duration was to be expected as

being previously identified by Jebari et al. (2012) with over-
estimations higher than 40 %. Here the overestimations are
higher as the disaggregation inherits the errors caused by the
regionalisation of the daily rainfall. Because of the unbiased
estimator, OK tends to smoothen the spatial structures of the
rainfall, leading to overestimation of the low intensities (ex-
plaining the longer event durations) and underestimation of
the extreme ones (explaining the lower event volumes). The
performance of the disaggregation may improve if another
regionalisation method that better captures the temporal vari-
ability is employed.

The ARM method underestimated both mean event dura-
tion and mean event volume, which explains the underesti-
mation in both annual number of events and their volume.
Thus, it can be seen that Direct-P outperformed the ARM
and Disagg methods not only in terms of annual rainfall ero-
sivity but also in terms of specific events characteristics. In
case one would like to obtain erosive event characteristics
for ungauged sites, the Direct-P method should be preferred
since it was able to produce acceptable results and yielded
better performance compared with the two tested stochastic
rainfall models.

Moreover, it should be noted that other available stochas-
tic rainfall models could perhaps yield better performance
in comparison to the selected stochastic rainfall models (see
Sect. 1 for examples). The scope of the study limited the
selection of stochastic rainfall models to the two presented
in this study only. Since any rainfall model has its own
unique strengths and weaknesses, it is possible that some
other non-tested model could yield better performance in
terms of reproducing maximum 30 min rainfall intensities,
which are directly used for the estimation of the rainfall ero-
sivity (Sect. 3.1).

4.3 Annual rainfall erosivity – data length sensitivity

Despite the fact that Direct-R and Direct-P methods yielded
better performance than the evaluated stochastic rainfall
models, the benefit of the latter is the ability to generate long
time series of arbitrary length of high-resolution data for un-
observed locations. The goal of this section is to investigate
how long the synthetic time series should be in order to ob-
tain a stable estimate of the mean annual rainfall erosivity,
which is most frequently used as an input to the soil erosion
models (Panagos et al., 2015, 2017). Thus, this information is
relevant for the soil erosion modellers in order to evaluate the
impact of potential bias in the assessment of the mean annual
rainfall erosivity on the soil erosion modelling results. Using
the ARM model and the methodology described in Sect. 3.5,
it was investigated how many years of data are needed in or-
der to obtain stable annual rainfall erosivity estimation. Im-
portant to remember is that the ARM model performance for
this task is better than what was shown in Sect. 4.1 and 4.2, as
here the ARM model was fitted directly to observations and
not regionalised. Figure 10 shows results of this investiga-
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Figure 9. Relative bias of all stations (N = 32) for all realisations (N = 20) and density scenarios (N = 5) for different erosive event
variables (for each box plot,N = 3200). Annual number of erosive events, annual number of all erosive event volume, erosive event duration,
maximum event I30 rainfall intensity, and erosive event volume are shown. Outliers are excluded for clarity.

Table 1. Median values over all reference stations (N = 32) and realisations (N = 20). Simulated values are given for the 100 % density
scenario.

Annual erosive Annual erosivity R Mean event Annual erosive Mean event Mean event
events I30 rainfall volume duration volume

[–] [MJmmha−1 h−1] [mmh−1] [mm] [h] [mm]

Observed 14.5 642.7 10.86 303.2 22.5 21.1
Direct-R – 653.8 – – – –
Direct-P 14.6 647.7 10.89 303.6 22.6 21.0
ARM 11.6 580.4 11.92 227.1 12.0 16.8
Disagg 14.2 475.5 10.09 277.8 35.9 19.6

tion. It can be seen that the variability between different real-
isations was quite high (Fig. 10). Moreover, investigation of
the intersection between the 5 % and 95 % realisation quan-
tiles (i.e. with the aim to exclude potential extremes) and the
±20 % interval of the mean annual rainfall erosivity (calcu-
lated from the full 200-year time series) indicates that in the
case of the 5 % quantile (Fig. 10), in most cases 60 years of
data were needed in order to obtain a value within this±20 %
interval (Fig. 10). This indicates that calculations of the an-
nual rainfall erosivity for soil erosion modelling using USLE
or RUSLE (e.g. Renard et al., 1997; Panagos et al., 2017) us-
ing only a limited sample size (e.g. less than 5 or 10 years)
will likely result in a greater than ±20 % difference to the
long-term mean. Consequently, a similar impact (i.e. over-
or underestimation) on the calculated soil erosion rates will
be obtained if one applies the RUSLE equation for the pre-
diction. Moreover, it should be noted that the results are to
some extent sensitive to the selection of the threshold (i.e.
20 % value). More specifically, using lower threshold values
would result in needing longer time series to obtain stable
annual rainfall erosivity estimates. Conversely using higher
threshold values would require shorter time series.

5 Conclusions

This study evaluated four methods that can be used to esti-
mate the annual mean rainfall erosivity (R) in space. Based
on the presented results the following conclusions can be
drawn.

1. For the mean annual rainfall erosivity both tested direct
regionalisation methods (Direct-R and Direct-P) out-
performed (Fig. 8) the tested stochastic rainfall mod-
els (ARM and Disagg), with slightly better results for
Direct-R. Furthermore, in terms of method complexity,
Direct-R can be regarded as the simplest since it does
not require the fitting of any model parameters. Differ-
ences among tested methods were relatively large, for
example, in relative bias up to 25 %.

2. The main drawback of the Direct-R method is that it
cannot be used to estimate the number of erosive events
or mean event duration without applying the model
to every variable separately (e.g. number of erosive
events, annual rainfall erosivity). This information is
sometimes additionally required in erosivity studies, al-
though it is not directly used by the USLE-type models.
Therefore, the Direct-P method has the advantage that
it is able to generate high-resolution time series of ero-
sive events for ungauged sites. Therefore, information
about the number of erosive events and the characteris-
tics of erosive events can be determined as well. In terms
of the characteristics of the erosive events, the Direct-
P method yielded better performance than both tested
stochastic rainfall models.

3. Both rainfall generators have proven their applicability
in the field of soil erosion modelling since they are able
to produce long synthetic series of the high-resolution
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Figure 10. Relationship between mean annual rainfall erosivity and number of years used in the rainfall erosivity calculation. Panel (a)
shows 50 different realisations (grey lines) together with the mean annual value calculated using all 50 realisations with 200 years of data
(dotted red line) and±20 % of this mean value (solid red line). Panel (b) shows 5 % and 95 % quantile values (black line) calculated based on
50 realisations shown in (a) and intersections between these quantile values and the ±20 % interval. Panel (c) shows boxplots of intersection
points for 17 stations for the 5 % and 95 % quantiles. Panels (a) and (b) are shown for station ID= 10113 (Norderney).

data, which can be used to calculate stable rainfall ero-
sivity estimates.

4. The cross-validation methodology using multiple den-
sity scenarios (Fig. 7) indicated that all methods per-
formed slightly better with increasing station density.
However, interpolation of rainfall erosivity for un-
gauged locations will in the case of the Direct-R and
Direct-P methods introduce some bias (∼ 5 %), also in
the case of having very high station density (Fig. 8). For
the ARM and Disagg methods, this bias can be larger
than 10 % (Fig. 8). Even more significant differences
could be expected in the case of topographically more
complex areas. Hence, station density should be as high
as possible to obtain optimal rainfall erosivity estimates
for ungauged locations.

5. Investigation of the impact of time series length on the
annual rainfall erosivity for 18 stations was additionally
carried out using the ARM model. More than 60 years
of data were required in the case that one would like
to obtain rainfall erosivity estimates within 20 % of the
actual long-term mean annual rainfall erosivity.

Thus, this conclusion is of critical importance for soil ero-
sion studies where rainfall erosivity estimates are used as in-
put, since in most cases the high-resolution data used to es-
timate rainfall erosivity are much shorter than 60 years. So,

in cases where only 5–10 years of observed rainfall data are
available, the estimated mean annual rainfall erosivity can be
up to ±100 % in comparison to the actual long-term mean
annual rainfall erosivity, which can be reduced by the appli-
cation of one of the here used rainfall generators.

It should be noted that the approaches presented in this pa-
per should be applied and tested for further case studies with
different rainfall and topographical characteristics than for
Lower Saxony, which is mostly flat and without major oro-
graphic obstacles. Additionally, some study limitations and
lessons learned can also be made based on the presented re-
sults and conclusions: for example, resolution of the mea-
surement device, which has evolved in recent decades, has a
significant effect on the calculated rainfall erosivity and rela-
tive bias (Fig. S1).
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