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Abstract: General weather conditions may have a strong influence on the individual elements of the hydrological cycle, 
an important part of which is rainfall interception. The influence of general weather conditions on this process was 
analysed, evaluating separately the influence of various variables on throughfall, stemflow, and rainfall interception for a 
wet (2014), a dry (2015), and an average (2016) year. The analysed data were measured for the case of birch and pine 
trees at a study site in the city of Ljubljana, Slovenia. The relationship between the components of rainfall partitioning 
and the influential variables for the selected years was estimated using two statistical models, namely boosted regression 
trees and random forest. The results of both implemented models complemented each other well, as both indicated the 
rainfall amount and the number of raindrops as the most influential variables. During the wet year 2014 rainfall duration 
seems to play an important role, correlating with the previously observed influence of the variables during the wetter 
leafless period. Similarly, during the dry year 2015, rainfall intensity had a significant influence on rainfall partitioning 
by the birch tree, again corresponding to the influences observed during the drier leafed period. 
 
Keywords: Throughfall; Stemflow; Rainfall interception; Rainfall microstructure; Boosted regression trees; Random 
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INTRODUCTION 

 
The hydrological cycle is altering due to climate change, as 

differences in global redistribution of precipitation and varia-
tions in seasonal precipitation patterns are observed (Inglezakis 
et al., 2016). This results in a significant reduction of precipita-
tion in some parts of the world, while major variations in the 
timing and amount of precipitation per dry and wet season are 
expected elsewhere (Peng et al., 2021). The pronounced differ-
ences between the wet and dry periods significantly alter the 
water yield and the local water balance, the ecosystem services, 
the water availability for vegetation, leading to changed occur-
rences of floods and droughts (Bezak and Mikoš, 2014; Hun-
gate and Hampton, 2012; Xu et al., 2020). 

In the context of climate change, the relationship between 
the water balance and vegetation in dry and wet periods is 
increasingly recognized. In this aspect, various influences of 
different vegetation systems were studied. Vegetation is an 
important component, determining the ecosystem services, 
which were recognised to help mitigate the intensity of ex-
tremely dry and wet conditions expected in the future (Peng et 
al., 2021). An important contribution to the ecosystem services 
is also presented by the forest ecosystem affecting the global 
carbon budget. The different response of a forest ecosystem in 
wet and dry periods was analysed by Xiao et al. (2020), who 
concluded that in the dry season the precipitation generated 
significantly positive effects to the cumulative CO2 emissions, 
while the soil respiration rate was mainly influenced by the fine 
root biomass regardless the season. An analysis of historical 
data from the tree rings was performed by Gao et al. (2020), 
who observed that the growth of trees was improved by wet-
ness, suggesting that tree growth is more sensitive to wetness 
than the forest coverage. Wetter conditions may, on the contra-
ry, reduce the carbon flux and evapotranspiration in steppe 

ecosystems, for which Hao et al. (2008) reported that both 
timing and frequency of rainfall events during the growing 
season significantly alter the capacity of steppe vegetation to 
uptake CO2. 

Forest ecosystems and trees in general also significantly in-
fluence the hydrological cycle through the process of rainfall 
interception (Dohnal et al., 2014; Klamerus-Iwan et al., 2020; 
Xu et al., 2013). Precipitation reaching the vegetation surface is 
distributed among the intercepted rainfall, which is captured by 
the canopy and eventually evaporates back into to the atmos-
phere, throughfall, which is described as the precipitation 
reaching the ground by dripping from the canopy or falling 
directly to the ground through the gaps in the foliage, and 
stemflow, presenting the water flowing to the ground down the 
branches and stems (Levia and Germer, 2015; Sadeghi et al., 
2020; Staelens et al., 2008; Xiao et al., 2000; Yue et al., 2021; 
Zabret et al., 2018). Rainfall interception is influenced by vege-
tation and meteorological characteristics. Vegetation character-
istics considered are mainly tree characteristics, such as the tree 
height and surface area (e.g., projected tree canopy), smooth-
ness and absorbance of the bark, leaf area index, canopy cover-
age, and canopy storage capacity (Dohnal et al., 2014; Klamer-
us-Iwan et al., 2020; Xu et al., 2013; Zabret, 2013). According 
to the differences among the tree species, the different response 
of rainfall partitioning was analysed (Honda et al., 2014; 
Schooling and Carlyle-Moses, 2015). As characteristics of 
some tree species (e.g., deciduous trees) are substantially influ-
enced by the phenoseasons (presence and absence of leaves in 
the tree canopy), the rainfall partitioning in leafed and leafless 
period has also been frequently studied, mainly in relation to 
the meteorological conditions (Brasil et al., 2020; Levia and 
Germer, 2015; Mużyło et al., 2012; Su et al., 2019; Zabret et 
al., 2018). Meteorological characteristics on the contrary ex-
plain the characteristics of rainfall events, for example the 



Relation of influencing variables and weather conditions on rainfall partitioning by birch and pine trees 

457 

rainfall amount, duration and intensity, air temperature and 
humidity, vapour pressure deficit and wind conditions (Andre 
et al., 2008; Staelens et al., 2008; Zabret and Šraj, 2019a). 
Although meteorological conditions are significantly associated 
with dry and wet periods, which influence the hydrological 
cycle, the influence of these two water-related conditions has 
been so far overlooked in the analysis of rainfall interception. 

Rainfall interception is an important part of the hydrological 
cycle and is, due to the inclusion of trees, also one of the eco-
system services. The response of rainfall interception according 
to various influencing variables, type of rainfall events, and 
phenoseasons has been analysed; however, the process of rain-
fall interception associated with dry and wet periods has been 
neglected so far. As numerous researchers have observed the 
relationship between wet and dry periods and vegetation re-
sponse to various natural processes, the main objective of the 
presented analysis is to investigate a possible influence of gen-
eral weather conditions (e.g., wet and dry periods) on through-
fall, stemflow, and rainfall interception. Extreme weather 
events are becoming more frequent due to climate change and 
the differences in water balance between dry and wet periods 
are increasing. As a result, the connections between climate 
variables and individual interception processes as well as the 
processes of the hydrological cycle are also different. There are 
not many studies with data sets long enough to capture wet and 
dry periods, therefore this is one of the important advantages of 
this study. Two statistical methods, namely boosted regression 
trees and random forest, were used to evaluate the influence of 
meteorological variables on rainfall partitioning components 
during wet, dry, and average years. Such statistical methods are 
seldom used for analysis of rainfall interception data, although 
the application of such methods can give us a new, different 
insight into the data and the connections between them.  
Additionally, the study of different tree species is very im-
portant in the field of interception, as these results cannot be 
generalized. 

 
MATERIAL AND METHODS 
Study site 

 
The study site is located in the outskirt of the city of 

Ljubljana, Slovenia (46.04° N, 14.49° E). The area has typical 
sub-alpine climate with well-defined seasons and is character-
ized by Temperate oceanic climate (Cfb) according to the Kö-
ppen Climate Classification. The long-term analysis of the 
meteorological data was prepared taking into account the data 
collected at the Ljubljana Bežigrad meteorological station be-
tween years 1986 and 2016 (ARSO, 2020). The average air 
temperature for the area was equal to 10.5 °C. Generally, the 
lowest temperatures are observed during January (–0.1 °C on 
average), while the warmest is July (20.8 °C on average). The 
average long-term air temperature in winter was 0.8 °C, in 
spring and autumn 10.7 °C, and in summer 19.9 °C. The aver-
age amount of rainfall delivered per year in the analysed period 
was 1355 mm. The driest year was observed to be 2011, char-
acterized by 998 mm of rainfall, while the wettest year was 
2014, delivering 1851 mm of rainfall in total. The most rainfall 
is in general delivered during the autumn months (around 30% 
of total yearly rainfall), while winter is the driest period, also 
because snow precipitation is observed instead of rainfall in the 
colder part of the year. 

The study plot is part of a small urban park, located between 
educational and business buildings. The research plot itself 
spans over 600 m2 and is covered with regularly mowed grass. 
In its western part there are two separated groups of trees, while 

in the east side there is a clearing. One group of trees in the 
southern part consists of birch trees (Betula pendula Roth.), 
which are on average 15.7 m high and have a total projected 
crown area of 17.9 m2 and a diameter at breast height of 17.9 
cm. Their branches grow upwards, and its bark is smooth and 
thin with a bark storage capacity estimated to be 0.7 mm (Za-
bret and Šraj, 2021). Birch is a deciduous tree species with 
distinct phenoseasons, which were determined according to the 
observations of the tree canopy at the field and complemented 
with leaf area index (LAI) measurements, using LAI-2200c 
Plant Canopy Analyzer (LI-COR). In general, the leafless phe-
noseason was observed between October and April, when LAI 
was on average 0.8 and the canopy storage capacity was 1.1 
mm. The leafed phenoseason was observed between April and 
October, when LAI was equal to 2.6 and the canopy storage 
capacity increased to 3.5 mm. The group of the trees on the 
northern part of the plot are pine trees (Pinus nigra Arnold). 
They are on average 12.6 m high, have an average diameter at 
breast height of 19 cm, and a total projected crown area of 22.7 
m2. The bark surface is rough, the bark itself is thick and more 
absorbent with an estimated storage capacity of 3.5 mm. The 
branches are inclined downwards. As pine is a coniferous tree 
species, phenoseasons are not influencing the canopy character-
istics to such an extent as in the case of birch trees. However, 
LAI in winter is 3.4 and the canopy storage capacity was esti-
mated to be 2.7 mm, while in the summer time, LAI is 4.3 and 
the canopy storage capacity 2.9 mm.  
 
Measurements 

 
The components of rainfall partitioning have been measured 

at the study plot since the beginning of 2014 (Zabret and Šraj, 
2021; Zabret et al., 2018). Measurements of throughfall and 
stemflow were performed under both groups of trees, while 
rainfall in the open was measured on the clearing at the study 
plot and at the nearby rooftop (Zabret, 2013; Zabret and Šraj 
2019a; Zabret and Šraj, 2021). Values of other meteorological 
characteristics (wind speed and direction, air temperature and 
humidity) were obtained from the Ljubljana Bežigrad meteoro-
logical station (ARSO, 2020), which is because of its location 
representative for the whole Ljubljana basin (Nadbath, 2008). 

Measurements of throughfall were performed both automati-
cally and manually. Under each group of trees there were two 
fixed steel trough gauges (0.75 m2) positioned from the tree 
trunk towards the edge of the canopy. One was equipped with a 
tipping bucket flow gauge (Unidata 6506G, 50 mL/tip) and a 
data logger (Onset HOBO Event), while the other one was 
connected to 10 L and 50 L polyethylene containers, which 
were manually emptied after each event. Under each group of 
trees there were also 10 funnel-type gauges (78.5 cm2, 1-L 
capacity), manually emptied after each event and occasionally 
moved under the trees to capture the spatial variability of 
throughfall. These collectors were moved after every 20 events 
in a random pattern under the canopy. Throughfall values used 
in the analysis were determined as the weighted average ac-
cording to all the collectors’ area used. 

Stemflow was measured per one tree from each group. The 
halved rubber collar was spirally wrapped around the tree trunk 
and attached with silicone and nails. In case of a pine tree the 
water was collected in a manually read 1-L container at the 
bottom of the tree, which was emptied at the same time as the 
throughfall collectors. In case of a birch tree, the stemflow was 
automatically recorded, as the hose from the collar was con-
nected to a tipping bucket flow gauge (Onset RG2-M, 0.2 
mm/tip) and a data logger (Onset HOBO Event).  
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Rainfall was measured at two locations, at the clearing ap-
proximately 10 m from the nearest tree canopy and at the near-
by rooftop, approximately 45 m from the treetops. Rainfall at 
the clearing was measured with a tipping bucket rain gauge 
(Onset RG2-M, 0.2 mm/tip), connected to the data logger (On-
set HOBO Event). Rainfall on the rooftop was measured with a 
disdrometer (OTT Parsivel), enabling also measurements of 
rainfall microstructure, i.e. raindrop diameter, raindrop veloci-
ty, and the number of raindrops. The measuring area of the 
disdrometer is 54 cm2 and the measured data are allocated to 
one of the 32 drop diameter classes (ranging from 0.312 mm to 
24.5 mm) and 32 velocity classes (ranging from 0.05 m/s to 
20.8 m/s). The drop diameters smaller than 0.312 mm were 
assigned to the smallest drop diameter class, as they are outside 
the device’s measurement range. The recorded time series data 
from the rain gauge and the disdrometer were used to identify 
the rainfall events (separated with at least a 4-hour dry period) 
and their characteristics (duration and intensity). The 4-hour 
dry period was selected to divide the events based on the obser-
vations of the rainfall and throughfall dynamics at the field, as 
during the wetter time of the year throughfall lasted for quite 
some time after the cessation of the rainfall. Shorter rainfall 
interruptions were captured as part of the defined events. The 
dry period was defined with an accuracy of 0.2 mm of rainfall 
(equal to the volume of the rain gauge tipping bucket). 

The tree characteristics were determined in individual sur-
veys. The photographs of the trees were taken at a required 
distance to avoid deformation of proportions and were used to 
determine the tree height, the area of the projected canopy, and 
the branch inclination. The diameter at breast height was calcu-
lated from the measured perimeter of the stem. The bark stor-
age capacity was determined from the bark samples, extracted 
using a steel hole puncher, according to the procedure described 
by Perez-Harguindeguy et al. (2013). Phenoseasons were de-
termined based on the regular measurements of LAI, performed 
with LAI-2200c Plant Canopy Analyzer (LI-COR) following 
the protocol for isolated trees (Li-COR, 2015). The canopy 
storage capacity was calculated from the observed rainfall and 
throughfall data according to the Leyton graphical method 
(Leyton et al., 1967).  
 
Data analysis 

 
Measured data of rainfall precipitation (P), throughfall (TF), 

and stemflow (SF), collected in years 2014, 2015, and 2016, 
were used in the analysis. Based on these data, the third com-
ponent of rainfall partitioning, i.e. rainfall interception (I), was 
calculated for each event: 

 
I = P – TF – SF (1) 

 
In the selected period, 413 rainfall events were observed in 

total, but not all of them were included in the analysis. Snow 
and sleet events were excluded in the initial phase, while during 
the further preparation of the data, the events without complete 
time series on rainfall, throughfall, and stemflow due to clog-
ging of the measurement equipment were also excluded. There-
fore 365 rainfall events were taken into account in the analysis, 
capturing 86% of the total rainfall, delivered in the analysed 
period. Additionally, the disdrometer was not operational due to 
a software error for a longer time period during 2015. There-
fore, rainfall microstructure data were not included in the anal-
ysis for this year. 

For the selected rainfall events, the influence of the variables 
describing general weather conditions was evaluated using two 

similar statistical methods, namely general boosted regression 
trees (BRT) and random forest (RF). Both models are based on 
the method of the regression trees, however the way of upgrad-
ing them differs for each method. Two methods were selected 
for the analysis as a combination of several methods allows the 
verification of the results of an individual method and enables a 
broader interpretation of the results. The regression tree model 
is designed by repeating the divisions of the influential varia-
bles and by adapting a simple prediction model for the target 
variable within each division. The result of the division process 
is shown graphically with a decision or regression tree (Loh, 
2011; Zabret et al., 2018). As a target variable, throughfall 
(TF), stemflow (SF), and rainfall interception (I) were set. Each 
model was run six times per observed year (namely, 2014, 
2015, and 2016), once per each target variable, taking into 
account all influential variables and also the variables without 
data on the rainfall microstructure due to the longer period 
without available data (year 2015 was excluded). The influen-
tial variables included in the analysis (Table 1) were the total 
rainfall amount per event (Pa), the average rainfall event inten-
sity (Pi), the total duration of the rainfall event (Pd), the average 
air temperature (T), and the vapour pressure deficit (VPD) 
during an event, the average wind speed (Ws) and the direction 
(Wd) per event, the dry period duration before a rainfall event 
(DryP), the time when an event occurred, namely during the 
day, the night, or both (DN), the phenoseason (Feno), the aver-
age raindrop diameter (DropD), the velocity (DropV) per event, 
the median volume diameter of an event’s raindrops (MVD), 
and the number of raindrops delivered per event (DropNr).  

 
Table 1. Influential variables included in the analysis. 
 

Variable Abbreviation Unit 
Rainfall amount per event Pa mm 
Average rainfall event intensity per 
event 

Pi mm/h 

Total duration of the rainfall event Pd h 
Average air temperature during the 
event 

T °C 

Average vapour pressure deficit 
during the event 

VPD kPa 

Average wind speed during the event Ws m/s 
Average wind direction during the 
event 

Wd ° 

Dry period duration before the  
rainfall event 

DryP h 

Time when the event occurred, name-
ly during the day, the night, or both 

DN – 

Phenoseason Feno – 
Average raindrops diameter of the 
drops, observed during the event 

DropD mm 

Average raindrops velocity of the 
drops, observed during the event 

DropV m/s 

Median volume diameter of an 
event’s raindrops 

MVD mm 

Number of raindrops delivered per 
event 

DropNr – 

 
The BRT method combines two algorithms, regression trees 

and boosting (Elith et al., 2008), which improve the efficiency 
of an individual model and provide a better understanding of 
the results with additional factors. Boosting is based on the 
assumption that the average of many raw predictions, which are 
upgraded after every single repetition, will result in a better 
final model. The sequential approach of the step-by-step meth-
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od iteratively adjusts and improves the model based on a set of 
training data (Elith et al., 2008). Due to the larger number of 
model runs, it is also possible to estimate the impact of an indi-
vidual variable on the design of the model and thus on the 
target variable. Friedman (2001) presented an equation that can 
be used to estimate the relative influence (RI) of each variable 
included in the BRT model. The RI is based on how many 
times a variable has been selected in the model to divide the 
regression tree. The number of selections is weighted by the 
square of the model improvement rate as a result of each split 
and expressed as an average with respect to all generated re-
gression trees (Friedman and Meulman, 2003). The RI is ad-
justed so that the sum of the RI values of all considered varia-
bles equals 100, making the higher values directly indicating a 
greater influence of the variable. 

The BRT models were implemented using the “gbm” pack-
age (Ridgeway, 2020) in R software (R core team, 2020). In the 
initial phase we determined the arguments of the model, using 
75% of the whole data set for training and 25% of the data for 
testing of the model, implementing 50 iterations for each set of 
the arguments and calculating the RMSE value of predictions 
from all iterations. When adjusting the model, various number 
of regression trees (15000, 1500, and 500) and values of the 
shrinkage parameter (0.001, 0.01, 0.05) were applied. According 
to the results, the final BRT models were estimated, taking into 
account the Gaussian distribution, 1500 trees, a shrinkage pa-
rameter of 0.01, and 5 cross-validation folds.  

Random Forest (RF) is an ensemble-learning algorithm, 
which merges the concepts of regression trees and bagging 
(Breiman, 2001). Bagging is a procedure enabling growing of 
regression trees from different subsets in order to avoid highly 
correlated predictors. This algorithm relies on random selection 
of trees to describe the reliable relationship between the target 
and the influential variables. Cases are randomly selected from 
a data set, a random sample is used to design an individual 
regression tree, and predictions are formed for the remaining 
cases. The model repeats this process several times. Random-
ness is additionally ensured by imposing different randomly 
selected sets of influential variables on each division. This is 
possible due to random and repeated selection of individual 
target values and influential variables (Breiman, 2001). For 
each variable the variable importance measure is also estimated 
(Breiman et al., 2018). The variable importance gives the total 
decrease in node impurities from splitting on the variable, aver-
aged over all trees. In case of regression, as presented here, it is 
measured by the residual sum of squares. 

The RF models were built in R software (R core team, 
2020), using package “RandomForest” (Breiman et al., 2018). 
In the first phase of the model establishment, we divided the 
data set into a training (75%) and test (25%) set. The model 
arguments were selected one by one, applying numerous itera-
tions for each of the 30 models. For the number of variables 
randomly sampled as candidates at each split (mtry), the values 
between 10 and 40 were tested, using the “tune” function. The 
maximum number of terminal nodes of the trees (maxnode) 
was applied for the values between 5 and 30, while the number 
of the trees to grow (n.trees) was tested for values between 250 
and 5000. For these two arguments the best value was selected 
according to the RMSE and R2 values of the iteration results. 

 
RESULTS 

 
The analysed data on rainfall partitioning were collected 

during the years 2014, 2015, and 2016. These years were hy-
drologically quite distinct, as according to the long-term aver-

age annual precipitation, 2014 was recognised as a wet, 2015 as 
a dry, and 2016 as an average year. During 2014 we registered 
167 events, delivering 1575 mm of rainfall. For this year, the 
total rainfall amount (1841 mm) was 36% larger than the aver-
age long-term yearly rainfall amount of 1355 mm measured at 
the Ljubljana-Bežigrad meteorological station. On the contrary, 
in 2015, we recorded 85 events, delivering 931 mm of rainfall. 
The total delivered rainfall (1106 mm) was 18% smaller than 
the long-term average rainfall amount per year (1355 mm). 
Furthermore, the year 2016 was similar to an average one, as 
we observed 113 rainfall events delivering 1139 mm of rainfall. 
Through the entire year, 1317 mm of rainfall was measured, 
which is comparable to a long-term average precipitation of 
1355 mm at the Ljubljana-Bežigrad meteorological station. 
Although during the dry year 2014 the largest number of the 
rainfall events were recorded, they on average delivered the 
smallest amount of rainfall per event (9.4 mm) and on average 
lasted for the shortest time (5.7 h), but were on average the 
most intense (2.1 mm/h) (Figure 1). The average rainfall inten-
sity and duration of rainfall events during the years 2015 and 
2016 were similar (average intensity of 1.4 mm/h and 1.5 
mm/h, respectively and average duration of 8.0 h and 8.1 h, 
respectively); however, the events in the dry year 2015 deliv-
ered on average more rainfall (11.0 mm) than the events in the 
average year 2016 (10.1 mm per event on average).  

Comparing the climate conditions in the considered years 
only slight differences were observed for the wind characteris-
tics, vapour pressure deficit, and air temperature. However, a 
noticeably shorter dry period between the events was observed 
in the wet year 2014 (40 h on average) comparing to the years 
2015 and 2016 (58 h and 56 h, respectively). The rainfall events 
characteristics in the considered years also differ according to 
the rainfall microstructure. The size of the rainfall drops was 
significantly different (p < 0.001) during the wet year 2014 
comparing to the years 2015 and 2016, as in the year 2014 an 
average raindrop diameter was equal to 0.85 mm and MVD was 
equal to 1.79 mm, while during the years 2015 and 2016 the 
drop diameter on average accounted to 0.67 mm and 0.62 mm 
and MVD to 1.51 and 1.44 mm, respectively. However, the 
larger raindrops resulted in the smaller number of drops per 
event, as the lowest number of raindrops was on average de-
tected in the wet year 2014 (Figure 1). 

The values of rainfall partitioning components were quite 
similar for the years 2014 and 2016, while some deviations are 
observed for the values measured in 2015, when higher values 
of throughfall and stemflow proportions according to the rain-
fall in the open were observed (Figure 2). In general, over all 
three observed years, throughfall under the birch tree was on 
average equal to 53% (± 34%), average stemflow was 1.2% (± 
2.5%), and average rainfall interception was 46% (± 35%). 
Throughfall under the pine tree was on average lower than 
under the birch tree, resulting in 27% (± 26%) of rainfall in the 
open, while stemflow accounted for only 0.03% (± 0.10%) and 
the rainfall interception by the pine tree on average presented 
73% (± 26%) of rainfall in the open. 
 
Influence of the rainfall event characteristics on throughfall 

 
Both of the applied models, namely BRT and RF, indicate 

that throughfall under the birch trees is influenced by the larger 
number of variables than throughfall under the pine trees, re-
gardless the year (Figure 3). Throughfall (TF) under the birch 
trees in the wet year 2014 was the most dependent on the rain-
fall amount (Pa) and intensity (Pi), rainfall duration (Pd), and 
the average vapour pressure deficit (VPD) during the rainfall  
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Fig. 1. Boxplots of considered rainfall event characteristics for each analysed year. 
 
 

 
 
Fig. 2. Measured throughfall (TF) and stemflow (SF) by birch and pine trees per rainfall event according to the observed year. 

 
event (Figure 3). Rainfall amount and intensity demonstrated 
between 18% and 20% of relative influence (RI) each by both 
applied methods, while RI for the first four most influential 
variables exceeded 60% in total. However, when taking into 
account also the variables describing the rainfall microstructure, 
the number of raindrops (DropNr) became the most influencing 
variable, indicating the amount of throughfall by birch in the 
wet year 2014. 

For the throughfall under the birch trees during the dry year 
2015, both models assigned a similar relative influence of al-
most 30% to rainfall intensity, indicating this variable as the 
most significant in addition to the rainfall amount. The BRT 
model also recognized air temperature and vapour pressure 
deficit as the influential variables with RI of 10%, while the 
random forest model assigned more than 8% of RI to rainfall 
duration and wind speed (Ws) (Figure 3).  

The data collected during the average year 2016 showed a 
significant influence of the rainfall amount only, as it represent-
ed almost 40% of RI according to the BRT model and more 
than half of the total RI expressed by RF model. More than 9% 
of RI was assigned also to wind speed and vapour pressure 
deficit according to the BRT method and to air temperature and 

wind speed according to the RF model. In case of data for 2016, 
the inclusion of rainfall microstructure variables does not affect 
the order of the influencing factors (Figure 3). As the most in-
fluencing variable, the rainfall amount is still recognised by both 
applied models, however the second most influencing variable, 
having a similar value of RI, is the number of raindrops. In this 
case both variables together represent 45% and 60% of RI ac-
cording to the BRT and RF model, respectively. 

The number of influencing variables according to the domi-
nant value of the relative influence in the case of throughfall 
under the pine tree is more straightforward (Figure 3). Rainfall 
amount was recognized to be the most influencing variable 
regardless the year, with an average RI between 43% (RF for 
2014) and 82% (RF for 2016). Both models also recognized the 
influence of rainfall intensity and duration on throughfall by 
pine trees in 2014, while in 2015, more than 8% of RI was 
assigned to wind speed. In 2016, in addition to the rainfall 
duration air temperature was the second most influencing vari-
able with RI larger than 5%. None of the rainfall microstructure 
variables exceeded more than 6% of RI, regardless the applied 
model or the year observed in case of throughfall under the pine 
trees. 
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Fig. 3. Relative influence (RI) of the considered variables for throughfall (TF) by the birch and pine trees according to the observed years, 
evaluated by the boosted regression trees (BRT) and random forest (RF) models. 
 
Influence of the rainfall event characteristics on stemflow 

 
Similarly as throughfall, stemflow is in general the most in-

fluenced by the rainfall amount (Figure 4). Stemflow (SF) by 
the birch tree was the most characterized by the rainfall amount 
regardless the year as the RI for this variable ranged between 
35% (RF, year 2014) and 61% (RF, year 2015). Stemflow by 
the birch tree in the wet year 2014 and the average year 2016 
was also highly influenced by the rainfall duration, which had 
the second highest RI in both years, regardless the model used.  

On the contrary, in the dry year 2015 stemflow by the birch 
tree was affected by a larger number of variables (Figure 4). 
The BRT model indicated that in addition to the rainfall 
amount, stemflow by the birch tree is also influenced by rainfall 
intensity, wind speed, vapour pressure deficit, and rainfall 
duration, as RI for all mentioned variables was larger than 9% 
(Figure 4). However, according to the RF model, the value of 
RI higher than 10% was estimated for the dry period duration 
and air temperature. 

When taking into account also the rainfall microstructure 
characteristics, the rainfall amount is still one of the most influ-

encing variables, combined with the number of raindrops. 
Stemflow in the wet year 2014 is still the most influenced by 
the rainfall amount, while the number of raindrops and MVD 
were also recognized as more influential. However, for 
stemflow in 2016, the number of raindrops together with the 
rainfall amount and duration were recognized as the variables 
with the highest RI (together accounting for 59% according to 
the BRT and 82% according to the RF model). 

The amount of stemflow by the birch trees was similarly in-
fluenced during the years 2014 and 2016, however for the pine 
trees similarities can be observed between the years 2015 and 
2016 (Figure 4). Stemflow by the pine trees during 2014 was 
the most influenced by wind direction, followed by the rainfall 
amount. In case of the BRT model these two variables resulted 
in RI of 77%, while in case of the RF model, the influencing 
variables with RI of more than 10% are also vapour pressure 
deficit, wind speed, and air temperature.  

When also including the rainfall microstructure variables, 
the influence of wind direction is minimized, as rainfall 
amount, duration, and the number of raindrops in combination 
with MVD (estimated by the BRT model) and air temperature  
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Fig. 4. Relative influence (RI) of the considered variables for stemflow (SF) by the birch and pine trees according to the observed years, 
evaluated by the boosted regression trees (BRT) and random forest (RF) models. 

 
(estimated by the RF model) resulted in RI higher than 50%. 
Stemflow by the pine trees in 2015 and 2016 is significantly 
influenced by the rainfall amount and intensity, as regardless 
the model or the year, these two variables present between 64% 
and 85% of RI. The substantial influence of the rainfall amount 
and intensity is also retained when introducing the rainfall 
microstructure influence. In this case, as the second most influ-
encing variable with RI larger than 10% both models recog-
nised MVD.  
 
Influence of rainfall event characteristics on rainfall 
interception 

 
Rainfall interception (I) is calculated as the difference be-

tween the measured values, i.e. rainfall amount in the open, 
throughfall, and stemflow (Eq. 1). Therefore, as the amount of 
throughfall is much larger than stemflow, this is the value that 
mainly determines the proportion of intercepted rainfall, result-
ing in similarly evaluated influencing variables as throughfall 
(Figure 3). 

Rainfall interception by birch and pine trees is the most in-
fluenced by the rainfall amount, which has the highest values of 
RI according to both models. In case of the birch trees the val-
ues of RI for the amount of rainfall ranged between 22% and 
63%, while in case of the pine trees they were even higher, 
ranging from 47% to 83%. Comparing these values to RI esti-
mated for throughfall, the values were a bit larger in case of the 
birch trees, while for the pine trees they were kept in a similar 
range.  

Rainfall interception of the birch trees was in the wet year 
2014 also significantly influenced by the rainfall duration and 
intensity, while in the dry year 2015 it was mainly influenced 
by rainfall intensity and in the average year 2016 by vapour 
pressure deficit (according to the BRT model) and air tempera-
ture (according to the RF model). In case of the pine trees the 
results were also very similar to the ones for the throughfall; in 
2015 and 2016 only the rainfall amount played a significant 
role in the process of rainfall interception, while in the wet year 
2014 also rainfall intensity and duration demonstrated RI values 
larger than 10% (Figure 5).  

 
 
 



Relation of influencing variables and weather conditions on rainfall partitioning by birch and pine trees 

463 

 

 
 

Fig. 5. Relative influence (RI) of the considered variables for rainfall interception (I) by the birch and pine trees according to the observed 
years, evaluated by the boosted regression trees (BRT) and random forest (RF) models. 

 
The results of both applied models considering also the rain-

fall microstructure are also similar to the results of throughfall 
data analysis (Figure 3). In case of the birch trees, the number 
of drops was recognised as a variable with the highest influence 
among the newly introduced variables, while in case of the pine 
trees for none of these variables the estimated RI exceeded 6% 
(Figure 5). 
 
DISCUSSION 

 
Although the two methods are very similar as they are both 

based on the principle of regression trees, there is one main 
difference if we consider the method associated with the regres-
sion trees (boosting and bagging). This is also reflected in the 
estimation of the most influential variables and their RI values. 
A comparison of the results by the two models shows that in 
general, the RI values of the variables estimated by the RF 
model are higher than those estimated by the BRT model (Fig-
ures 3–5). Therefore, the number of the variables for which the 
RI value exceeds the threshold value is larger when taking into 

account results of the BRT instead of the RF model. Thus, the 
combined analysis of the two methods allows for a more com-
prehensive evaluation of the results, as the RF model indicates 
the most influencing variables, while the BRT model highlights 
also the other possible variables with meaningful influence. 

The results demonstrate that throughfall, stemflow, and rain-
fall interception by birch and pine trees were the most influ-
enced by the amount of rainfall, which has been repeatedly 
recognized as the factor most influencing the rainfall partition-
ing components in general also in other studies (e.g., Levia and 
Germer, 2015; Staelens et al., 2008; Su et al., 2019; Zabret et 
al., 2018). In case of both considered tree species, rainfall dura-
tion seems to play an important role mainly during the wet year 
2014, while rainfall intensity had a significant influence on 
rainfall partitioning by birch trees during the dry year 2015. 
This observation seems to correlate well with the results pre-
sented by Mużyło et al. (2012), who observed a significant 
influence of rainfall duration on throughfall in a deciduous 
forest, especially during the leafless season. The leafless season 
is usually characterized by more precipitation and generally 
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wetter months, which may be equivalent to the hydrologically 
wetter year of 2014, in which a more pronounced influence of 
rainfall duration was observed in this study (Figures 3–5).  

As the wetter year 2014 can be correlated with the wetter 
leafless phenoseason, the drier year 2015 is expected to be 
associated with the drier leafed period. Therefore, the influence 
of rainfall intensity on rainfall partitioning in the drier year 
2015 is initially unexpected. Rainfall intensity was actually 
recognized as one of the most influential variables in previous 
studies, but its effect was observed for winter throughfall (Xiao 
et al., 2000), rainfall interception in the leafless period (Zabret 
et al., 2018), and rainfall interception in a wet year (Zabret and 
Šraj, 2019b). However, for a beech tree, Staelens et al. (2008) 
reported significant influence of rainfall intensity on stemflow, 
especially during the leafed period resulting in a decrease in the 
stemflow amount due to splashing of droplets intercepted by 
the canopy and forming throughfall instead of stemflow. Addi-
tionally, a more evident influence of rainfall intensity was 
estimated by both applied models for birch rather than for pine 
trees (Figures 3–5). A different influence of rainfall intensity on 
tree species with distinct vegetation properties was already 
observed in other analyses (e.g., Sadeghi et al., 2020; Siegert 
and Levia, 2014; Zabret et al., 2018). Birch trees have a 
smoother bark surface and more flexible leaves compared to the 
rougher and more absorbent bark of pine trees and its compact 
needles, therefore the process of splashing of intercepted drop-
lets may be more intense in the canopy of the birch trees. 

The relative influence, estimated by the BRT and RF mod-
els, shows that throughfall under the birch trees is determined 
by a larger number of influencing variables. In addition to the 
rainfall amount, duration, and intensity, also air temperature 
and vapour pressure deficit (VPD) were assigned with values of 
RI larger than 8%. Air temperature and VPD are closely con-
nected to the season of the year, corresponding also to the phe-
noseasons, and are especially significant for a deciduous birch 
trees (Zabret et al., 2018). Therefore, the significant RI values 
of air temperature and VPD may indirectly indicate the influ-
ence of phenoseasons on throughfall by birch, which is larger in 
the leafless period, characterized by lower air temperature and 
lower VPD values (Andre et al., 2008; Brasil et al., 2020; 
Mużyło et al., 2012; Šraj et al., 2008; Zabret and Šraj, 2018; 
Zabret et al., 2021). However, the relation between the influ-
ence of phenoseasons and meteorological variables on rainfall 
partitioning has already been recognized as a very complex one 
(e.g., Andre et al., 2008; Mużyło et al., 2012; Zabret and Šraj, 
2021). When analysing the influence of air temperature and 
VPD on throughfall by the birch tree, the results are similar 
among the years (Figure 6). Throughfall is in general decreas-
ing with increasing air temperature, which was observed also 
by Staelens et al. (2008). Warmer months of the year are also 
characterized with a fully leafed canopy, also decreasing the 
throughfall, while a higher air temperature increases the evapo-
ration, which may also lead to a decrease in throughfall (Šraj et 
al., 2008; Xiao et al., 2000). However, the response of  
 

 
Fig. 6. Partial dependence plots of the influence of air temperature (T) and vapour pressure deficit (VPD) on throughfall (TF) by birch trees 
during the considered years. 
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throughfall according the VPD values is similar for the years 
2014 and 2015, as lower VPD up to 1.5 kPa increases through-
fall under the birch tree, while larger values of VPD decrease 
the amount of throughfall (Figure 6). The data collected in 2016 
show a bit different response of throughfall according to the 
VPD values up to 2 kPa, while larger VPD values decrease 
throughfall under birch trees as well. 

Pine tree’s stemflow was influenced by more variables com-
pared to throughfall. In addition to the rainfall amount, which 
mainly determines stemflow under both tree species, rainfall 
intensity and rainfall duration also had an important influence 
on stemflow under the pine and birch trees, respectively. The 
significance of rainfall duration on stemflow by the birch tree 
was also recognised in the analysis of the stemflow response 
(Zabret and Šraj, 2021), as well as in the analysis of predicting 
the stemflow of a birch tree using the regression trees (Zabret et 
al., 2018). Although rainfall intensity was recognised as a less 
influential variable in the case of throughfall under the pine 
trees, it seems to have a larger influence on its stemflow. Re-
sults of both implemented models (BRT and RF) indicate RI 
values larger than 15% for rainfall intensity in the years 2015 
and 2016 (Figure 4). This is consistent with the results of the 
BRT model applied to stemflow data of a leafed phenoseason 
(Zabret et al., 2018), which also indicates some similarities in 
meteorological influences during the leafed phenoseason and 
the drier hydrological year. 

Introduction of variables specifying the rainfall microstruc-
ture into the analysis expressed significant influence of the 
number of rain drops on throughfall and rainfall interception by 
the birch trees. The number of raindrops as well as the mean 
volume diameter (MVD) were estimated to have considerable 
influence on stemflow in case of both considered tree species. 
However, no influence of these variables on throughfall under 
the pine trees was observed, as throughfall under the pine trees 
was still the most influenced by the amount of rainfall, which 
provided more than half of the RI according to the other con-
sidered variables. A more noticeable influence of rainfall mi-
crostructure on throughfall by birch than by pine trees was also 
confirmed in previous study (Zabret et al., 2018), in which a 
similar comparison of data with BRT models per phenoseason 
showed the influence of MVD on throughfall by pine trees only 
in the leafless season, while the number of raindrops had a 
significant role in regulating throughfall under the birch trees 
regardless the phenoseason. This might be connected to the 
distinct characteristics of the foliage of the considered tree 
species, i.e. leaves of the birch trees and needles of the pine 
trees. The different interaction of needles and leaves to the rain 
drops and their characteristics has been already reported by 
other researchers (e.g., Holder, 2013; Nanko et al., 2016; Zabret 
et al., 2017; Zabret et al., 2018). 

 
CONCLUSIONS 

 
The rainfall partitioning process is part of the hydrological 

cycle, for which changes are expected due to more pronounced 
precipitation patterns, resulting in more intense wet and dry 
periods. Accordingly, the influence of meteorological factors 
on throughfall, stemflow, and rainfall interception during a wet, 
a dry, and an average year was analysed. Two similar statistical 
methods based on the regression tree approach were applied, 
namely boosted regression trees and random forest. The com-
parison of the results showed that the methods are complemen-
tary, since the BRT model indicates numerous variables with 
relevant influence and the RF model highlights the variables 
with the highest influence. 

The variables with the highest influence expressed by both 
models were the rainfall amount and the number of raindrops. 
The comparison of the influential variables indicates to some 
extent the correlation between the wet period and the leafless 
season, as well as between the dry period and the leafed season. 
For example, rainfall duration had a high relative influence on 
rainfall partitioning by both tree species mainly in the wet year 
2014, while researchers already reported its influence in the 
leafless season. Stemflow by birch trees was also strongly 
influenced by air temperature and vapour pressure deficit, 
which are dependent on the season of the year, which is also 
consistent with the phenoseason. However, the results of the 
models also indicate significant differences in the response of 
the two tree species. The influence of rainfall intensity, the 
number of raindrops, and the median volume diameter was more 
pronounced in the case of the birch trees, while it was negligible 
in the case of the pine trees. This observation coincides with the 
conclusions of previous studies, i.e. that raindrops behave  
differently when interacting with needles or leaves. 

The presented analysis mainly confirms all previous obser-
vations made by other researchers about the different influences 
on the rainfall partitioning process by distinct tree species. 
However, a new insight into the impact of wet and dry period is 
presented, indicating that during a longer wet period the trees 
behave similarly as in the leafless period and during the longer 
dry period the rainfall interception process is similar as that in 
the leafed period. Nevertheless, additional analysis, taking into 
account multiple wet and dry periods as well as data for these 
periods for other tree species and other locations with different 
microclimatic characteristics, should be implemented in order 
to understand this aspect in more detail. 
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