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Abstract

Floodplains include unique environments shaped over a long time horizon

along rivers and smaller streams and formed by alluvial sediments. As

floodplains are flat, often with highly fertile and well-accessible land, they

have become the intrinsic focus of human society—while providing a vari-

ety of goods and ecosystem services. Intensive land use of floodplains is

degrading their natural values and significantly reducing their ecosystem

functions and services. A significant part of these key services is related

with the ability of floodplains to retain water and nutrients, which can be

understood as a flood control and a water-retention function. Although

these ecosystems serve a number of other basic functions, the importance

of floodplains as a place for water retention during extreme discharges cau-

sed by intense rainfall or snowmelt and the supply of water in times of

drought are essential under conditions of global change. In order to

increase the ability of floodplains to perform these functions, it is increas-

ingly required to preserve the connectivity of rivers with surrounding

floodplains and adapt human activities to maintain and restore river eco-

systems. This article reviews the recent understanding of floodplain delin-

eation, the most common causes of disturbance, the ecosystem functions

being performed, discussing in turn the measures being considered to miti-

gate the frequency and magnitude of hydrologic extremes resulting from

ongoing environmental changes.
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1 | INTRODUCTION

Floodplains are specific parts of the natural landscape, whose formation and existence are due to their association with
a watercourse, allowing the exchange of flow, sediment, nutrients, and organisms (Amoros and Bornette, 2002;
Benjankar, Egger, Jorde, Goodwin, & Glenn, 2011). Mostly defined as an area along the watercourse, floodplains are
usually formed by alluvial sediments deposited during floods of varying magnitude and associated geomorphological
processes (e.g., Lewin, 1978; Nardi, Vivoni, & Grimaldi, 2006). Flooding, with a wide variety of discharge magnitudes
and events ranging from extreme low flow events to infrequent high flow events (Poff et al., 1997; Whiting, 2002),
underpin floodplain ecosystem dynamics and influences a variety of biophysical and territorial features (e.g., fluvial
landforms, soil hydrology, or vegetation patterns), being a crucial process for ecosystem functioning. The timing, dura-
tion, and magnitude of floods influence the structure of riparian communities (Auble & Scott, 1998; Scott, Shafroth,
Auble, & Eggleston, 1997), as well as ecosystem functions and services. At the same time, flooding can be a dangerous
phenomenon when floodplains are intensively developed (de Martino, de Paola, Fontana, Marini, & Ranucci, 2012).
The strength of connectivity between a river and the surrounding terrestrial environment (i.e., the floodplain) varies
depending on the hydrogeomorphic control of the downstream flux of water and materials—both dissolved and particu-
late matter (Stanford, Lorang, & Hauer, 2005). A river should retain a flow regime with sufficient variability to encom-
pass the flow levels and events that support important floodplain processes (Opperman et al., 2010). Lateral exchange
between river channels and their floodplains, known as hydrologic connectivity, has been identified as a key variable in
biodiversity and composition of aquatic (e.g., Desjonquères, Rybak, Castella, Llusia, & Sueur, 2018; Leigh &
Sheldon, 2009; Paillex, Dolédec, Castella, Mérigoux, & Aldridge, 2013) and terrestrial (e.g., Casco, Neiff, & de
Neiff, 2010; Souter, Wallace, Walter, & Watts, 2014) biological communities. Hydrological connectivity also represents a
key feature supporting ecosystem processes such as nutrient turnover and geomorphic change (Hein, Baranyi,
Reckendorfer, & Schiemer, 2004; Schönbrunner, Preiner, & Hein, 2012; Welti, Bondar-Kunze, Tritthart, Pinay, &
Hein, 2012 or Park, 2020).

Floodplain ecosystems are unique in terms of their constantly recurring hydrological dynamics (Funk et al., 2019;
Schindler et al., 2014; 2016), which result from the interaction of geomorphic, hydrological, and biological processes
(Tomscha et al., 2017). Together with the outstanding ability of floodplains to retain water (Getirana et al., 2017), such
intrinsic dynamics modify morphology and water conditions and ensure the high diversity of natural conditions, as well
as their temporal variability (Tockner et al., 2000), maintaining a highly diversified mosaic of habitats, from open soils
to deciduous forests (Fischer et al., 2019), with a marked variability of aquatic, semi-aquatic and terrestrial habitats
(Hughes et al., 2005). Worldwide, with some of the most distinctive examples found in Europe, floodplains are threat-
ened by the loss of floodplain and riparian habitats, as well as by pollution and alteration of hydromorphological condi-
tions (Funk et al., 2020; Habersack et al., 2016; Vörösmarty et al., 2010). The most obvious effect of human activities is
urbanization, which increases the proportion of impermeable surfaces in floodplains, degrades landform diversity, and
affect sediment balance by altering runoff regimes (Chin, 2006; Booth and Bledsoe, 2009; Raška et al., 2019). Addition-
ally, levee construction along rivers often exacerbates the downcutting of riparian forests or plant communities and
increases in bank height, reflecting the urgent need for channel stabilization measures following changes in flow or sed-
iment regimes (Zachary et al., 2003). Higgisson et al. (2020) considers water resource development to be one of the main
causes of floodplain degradation, which has led to a decline in floodplain ecological condition.The embankment and
isolation of rivers from their floodplains, which allows their intensive use for agriculture, settlements or traffic routes,
are among the most common interventions in Central and Southern European floodplains (Hein, Schwarz, et al.,
2016). The floodplain that remains active are altered due to these changes and habitat regeneration is hindered (Díaz-
Redondo et al., 2017). Where floodplain forests remain, they are mostly converted from naturally regenerating stands to
stands managed for forestry. The extensive hardwood forests of Central European floodplains are of particular eco-
nomic importance (Klimo and Hager, 2008). Wetlands are being replaced by plant communities adapted to the water
regime of reservoir shorelines (Keddy, 2010), or even with forestry systems using non-native tree species (Hughes
et al., 2012). Recreation in floodplains is increasing in many parts of Europe, being a threat to conservation goals as well
as a chance for a better public appreciation of the value of floodplains and rivers (Hughes et al., 2012). Channel stabili-
zation and peak flow reduction in turn, disconnect a river channel from a floodplain, reducing both the channel migra-
tion rates and the channel avulsion (rapid channel shift during floods; Shields Jr et al., 2000, Zachary et al., 2003).
Approximately 70–90% of Europe's current floodplain area is estimated to be ecologically degraded due to human activi-
ties over the centuries, especially since the early 1950s (EEA, 2018), thus we can summarize that Europe is the conti-
nent most affected by disconnection of floodplains from rivers (Nilsson et al. 2005; Schindler et al. 2016). Tockner and
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Stanford (2002) suggested that approximately 46% of floodplains in North America (excluding northern Canada and
Alaska) were intensively cultivated, and 11% of floodplains across Africa were farmed at the beginning of the 21st cen-
tury. According to Erwin (2009), 90% of floodplains in North America are described as “cultivated” and non-functional.
Furthermore, climate projections in many parts of Europe, as well as other regions of the world, indicate an increasing
occurence of intense rainfall and prolonged droughts, which would affect the condition of floodplains (e.g. Moradkhani
et al., 2010; Schneider et al., 2011; Politti et al., 2014 or O'Briain, 2019). This article brings an overview of ecosystem
functions and services provided by floodplains and focuses on (a) operational frameworks for defining floodplains,
(b) major causes of their disturbance, and (c) more general approaches for protecting and restoring these ecosystems.
The issue of floodplain protection is outlined in this study with examples of the current situation in several Central and
Southern European countries.

2 | FLOODPLAIN DEFINITION

2.1 | Floodplain as a soil phenomenon

Different approaches have been adopted over the time to distinguish the floodplains from other landscape types.
Derived from the definition of a floodplain as an area along a watercourse formed by alluvial sediments deposited dur-
ing floods, gathering information on the soil properties or spatial extent of the inundation area is the most relevant
approach. A necessary prerequisite for this approach is data available at a relatively detailed scale (spatial resolution)
and comparable across larger territorial units or countries (Jakubínský et al., 2020). Using soil data, a floodplain is usu-
ally defined based on the spatial distribution of hydromorphic soils, characterized by the temporary or permanent wet-
ting of soil pores. Fluvisol is the most widespread floodplain soil type, formed by erosion of sediments in the upland
zone and deposited in lowland sites with flat valley bottoms in the transfer (piedmont) zone (WRB, 2015). Another soil
type that commonly found within a floodplain is Gleysol (WRB, 2015), the formation of which is influenced by periodic
recurring or persistent excess moisture in the near-surface soil layers. In addition, a much less widespread soil type
within a floodplain is Phaeozems (Fluvic Phaeozems according to WRB [2015]), in the form of deep semi-hydromorphic
soils. The spatial extent of certain soil types represents a stable component of the landscape. In fact, even after a possi-
ble loss of floodplain connectivity with the watercourse due to anthropogenic interventions, the soil types remain for a
long period of time, although the floodplain itself loses its natural functions.

2.2 | Hydrologically conceived floodplain

Hydrological and hydraulic data, mostly the results of modeling based on digital elevation models (DEMs), are often
used to define floodplains, in particular using the extent of inundated areas of 100-year flood (e.g., Omer et al., 2003 or
EEA, 2018). However, other values have been frequently used. For instance, Witner (1966) proposed an area of alluvial
soils corresponding to 50-year floods. Within this hydrological approach, the identification of floodplains relied upon
the creation of flood hazard maps, produced through detailed hydraulic modeling techniques (Grimaldi et al., 2013;
Noman et al., 2001). Existing methods for delineating inundated areas using hydraulic simulations were reviewed by
Noman et al. (2001) and Horritt and Bates (2002). Although these techniques and models can result in highly accurate
delineation of a floodplain, they can be computationally expensive and time-consuming to run, requiring the calibra-
tion of a large number of variables and model parameters (e.g., Horritt and Bates, 2002; Liu and Gupta, 2007). Addition-
ally, adequate input data (e.g., river cross-section or floodplain LiDAR data) are needed to obtain reliable results. The
significant refinement and facilitation of modeling is currently related to the availability of very accurate elevation data
provided by remote sensing technologies such as LiDAR (Light Detection and Ranging) methods in a number of afflu-
ent countries (e.g. Bezak et al., 2018; Rak et al., 2018; Ureta et al., 2020). In contrast to soil data, operational definitions
by flooded area are highly dependent on valley floor terrain characteristics and any anthropogenic intervention can
directly affect the extent of inundated areas and, thus, floodplains defined in this manner.

Since hydrologically and hydraulically defined floodplains depend on terrain characteristics, this delineation
approach is also understood as a “hydrogeomorphic method” (Nardi et al., 2006). This method uses GIS technologies
and hydrologic modeling techniques (e.g., HEC-RAS software; Ackerman et al., 2009; Patel et al., 2016) to delineate
floodplains as buffers at a specified distance from the watercourse (Entwistle et al., 2019), depending on the elevation of
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the terrain above the river water level. Floodplain delineation approaches (based on hydrologic–hydraulic and soils
data) often achieve very similar results in terms of the spatial extent of the defined floodplains in non-urban areas, as
evidenced in Figure 1. In urban areas, on the other hand, both approaches can be very different in terms of the location
of the borderline between the floodplain and the surrounding landscape, due to anthropogenic influences (e.g., the
presence of levees, flood protection walls and road or railway embankments).

In the Figure 2a, a broad active floodplain, which is limited by the slope edge adjacent to the valley floor, is
depicted. In contrast, Figure 2b shows the influence of anthropogenic landforms (presence of levees) affecting the
extent of the active floodplain, which is inundated during regular flood events. Behind the levee, the pedologically
defined floodplain (also referred to as the “geologic floodplain” according to Fuller [2018]), i.e., alluvial soil types
formed in the past, actually shows intermittent connectivity with the riverbed in the presence.

2.3 | Floodplain according to specific vegetation

As floodplains represent a specific environment formed by a long-term connectivity with a watercourse, in the case of
less-significant anthropogenic interventions and a minor modification of the natural environment, they can also be
defined on the basis of specific vegetation cover. These are almost always communities of azonal vegetation that do not

FIGURE 1 Comparison of floodplain areas defined on the basis of hydrological and pedological data along the Dřevnice River in the

Czech Republic, in urban (a) and forest-agricultural (b) landscape.

Source: authors, based on data provided by T. G. Masaryk Water Research Institute and Research Institute for Soil and Water Conservation

FIGURE 2 (a) Floodplain area covering the entire valley floor in the case of a near-natural landscape (the Berounka River floodplain,

Czech Republic); (b) urban floodplain limited by the presence of levees (the Vltava River floodplain in České Budějovice, Czech Republic).

Source: authors
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occur in any other landscape type than in floodplains, depending on the specific location relative to the channel axis
(Tockner and Stanford, 2002). Spatiotemporal variability in surface and groundwater hydrology, microclimate, geomor-
phology, and soils, combined with inter- and intraspecific competition, results in distinctive floodplain biodiversity
(Hughes et al., 2005; Meli et al., 2014; Robinson et al., 2002; Salo et al., 1986) that is most evident along
aquatic–terrestrial boundaries (Bunn and Arthington, 2002). Dynamic fluvial processes cause habitat rejuvenation and
succession (Hohensinner and Drescher, 2008), resulting in habitat heterogeneity (Opperman et al., 2010), which sup-
ports a floodplain with a shifting mosaic of habitat patches in terms of species, age classes, and physical structure
(Ward et al., 2002). Many authors (e.g., Evette et al., 2014; Sponseller et al., 2013; Corenblit et al., 2014 or McShane
et al., 2015) identify hydro-climatic constraints such as climate, soil moisture availability and fluvial disturbance as a
major factor influencing vegetation near watercourses. Gurnell et al. (2016) propose the conceptual model of
vegetation—hydrogeomorphology interactions using so-called dynamic zones within river corridors where different
hydrogeomorphological processes dominate so that plants and hydrogeomorphological processes interact in
different ways.

3 | THE ECOSYSTEM FUNCTIONS AND SERVICES OF A FLOODPLAIN

Floodplains represent one of the most productive ecosystems on Earth (Opperman et al., , 2010b). The high degree of
biodiversity and level of primary productivity of floodplains exceed the production of either purely terrestrial or aquatic
ecosystems (Tockner and Stanford, 2002). The dynamics and naturally high biodiversity of floodplains are responsible
for their high multifunctionality (Meli et al., 2014; Funk et al., 2020). Focusing on the value of global ecosystem ser-
vices, Costanza et al. (1997) found that floodplains are the second best ranked ecosystem type, behind estuaries, in
terms of their per hectare value to society. Despite representing <2% of the Earth's terrestrial land surface area, flood-
plains provide approximately 25% of all “terrestrial” (i.e., non-marine) ecosystem service benefits, with the regulation of
disturbance (i.e., attenuation of flood flows) providing the greatest value (Akanbi et al., 1999). Floodplains contribute to
a wide range of ecosystem functions by controlling the regional hydrologic cycle and the retention and transformation
of nutrients in river systems (Sanon et al., 2012; Schindler et al., 2014; Weigelhofer and Hein 2015). Their connectivity
patterns are also crucial for the provisioning of ecosystem services, including floodwater retention (e.g., Clilverd
et al., 2016; Habersack et al., 2015; Schober et al., 2015), nutrient retention (e.g., Hein et al., 2004; Natho et al., 2013;
Newcomer Johnson et al., 2016), or greenhouse gas emission retention (e.g., Audet et al., 2013; Funk et al., 2020). Other
ecosystem services provided by floodplains include surface water filtration (Mitsch et al., 2001; Noe and Hupp, 2005),
groundwater recharge (Hein et al., 2004; Jolly, 1996), water purification (Hein, van Koppen, et al., 2016), and provision
of food and fiber (e.g., fish, timber, and other plant resources; Welcomme, 1979). Fisheries supported by floodplain pro-
ductivity provide one of the most tangible examples of an economically and socially valuable ecosystem service
(Opperman et al., 2010). Furthermore, recent efforts to quantify the cultural ecosystem services provided by floodplains
and river ecosystems point to a range of non-material benefits (Funk et al., 2020; Hale et al., 2019). Traditionally, flood-
plains provide various water-related recreational opportunities, including swimming, boating, angling, and ice skating
(Funk et al., 2020). River landscapes may also be valued for their aesthetic quality and cultural or heritage significance
(Ghermandi et al., 2020; Thiele et al., 2020; Tieskens et al., 2018). A list of the key ecosystem functions and services pro-
vided by floodplains can be found in Table 1.

Floodplain ecosystem services are inextricably linked to hydrology (Morris et al., 2009); the hydrologic regime of a
floodplain determines what will grow there and how it can be used (Posthumus et al., 2010). Forest ecosystems in par-
ticular depend on natural hydrological and biological diversity (Turner et al., 2016), which are very important for the
delivery of regulation, provisioning, and cultural services (Mamat et al., 2018; Xu et al., 2017). Our understanding of
ecosystem services can benefit greatly from drawing on classic river–floodplain principles that recognize both longitudi-
nal and lateral connectivity (Tomscha et al., 2017).

Floodplains host a unique suite of habitats, and their composition and condition can serve as indicators of the eco-
system services they are able to provide (Burkhard et al., 2012; Podschun et al., 2018). Riparian systems (vegetation in
close proximity to the watercourse) are those of a highest importance; due to their spatial location and connectivity with
stream channels, they are inundated periodically and play an important role in water infiltration and aquifer recharge
(Gonzalez del Tanago et al., 2011), as well as flood attenuation and hydrological risk reduction (Horn and
Richards, 2006). Anderson et al. (2006) reported that these are especially smaller floods (with an average recurrence
interval of 2 or 5 years) that are more sensitive to the riparian vegetation conditions, and in these cases riparian
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TABLE 1 The frequently cited ecosystem functions and services of floodplains and their measured parameters/indicators (a

nonexhaustive list)

Category of
service (CICES
section) Ecosystem function Class of ecosystem service (CICES v5) Parameter/indicator

Provisioning Production (biomass) Fibers and other materials from cultivated
(and wild) plants, fungi, algae and
bacteria for direct use or processing
(excluding genetic materials); Animals
reared for nutritional purposes

Gross output1; Annual biomass increase2;
Nutritive productivity2

Water-retention and
evapotranspiration

Surface water used as a material (non-
drinking purposes); Ground and
subsurface water for drinking

Difference between water rainfall and
evapotranspiration3,4,5; Potential for
water provision6

Regulation and
Maintenance

Water-retention Hydrological cycle and water flow
regulation (Including flood control, and
coastal protection)

Time to fill water capacity; Curve
number (CN) 7; Quality of land cover,
slope, soil permeability and flow
length8; Floodplain water storage
volume9,10; Effective retention
volume11,12; Net supply of water
remaining after evapotranspiration
losses4; Water holding capacity13;
Retaining coefficients for forest
management 5

Self-cleaning processes of
water

Mediation by other chemical or physical
means (e.g. via Filtration, sequestration,
storage or accumulation)

Nutrient leaching 1; Nitrogen leaching
from floodplain area 4; Total nitrogen
and total phosphorus removed from
water3; Phosphorus load in the river
modeled by InVEST15; Water quality
index 6; Diversity of the instream
macroinvertebrates16

Evapotranspiration and
Condensation

Regulation of chemical composition of
atmosphere and ocean (e.g., greenhouse
gases concentration, isotopic variance in
atmospheric moisture); Carbon
sequestration by terrestrial ecosystems

Inverse values of daily temperatures
range for land use types 2;
Evapotranspiration17,18,19; Albedo of
land use types17; Extent of vegetation
cover14; Evapotranspiration and heat
exchange based on functional plant
traits 20; Land surface temperature21

Carbon capture Carbon sequestration by terrestrial
ecosystems

Carbon sequestration by plants2; Above
ground carbon storage 22; Global
warming potential1; Carbon stock 6;
Fluxes of greenhouse gases for land use
types10,4

Mineralization and
accumulation of organic
matter, storage and
recycling of nutrients

Decomposition and fixing processes and
their effect on soil quality

Soil carbon stock 1; Organic matter layer
and total nitrogen in top soil2;
Floodplain connectivity14

Functions of species
composition and diversity

Maintaining nursery populations and
habitats (Including gene pool protection)

A species value indicator1; Habitat-
conservation value1; Riparian quality
index2,23; Habitat provision index24;
Fish capacity index 22; Diversity of the
instream macroinvertebrates 16;
Proportion of natural land cover
weighted by a condition index4;
Presence of threatened species14;
Habitat value according to Habitat
Valuation Method25
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vegetation affects the magnitude of a flood event and the resulting damage. As an important landform agent and flow
resistance factor, riparian vegetation is responsible for the majority of energy losses in fluvial systems by controlling
sediment erosion, transport, and deposition in both the channel and floodplain (Corenblit et al., 2008; Gonzalez del
Tanago et al., 2011). The most important ecological functions of the riparian zone include providing a habitat and ref-
uge for aquatic and terrestrial species, facilitating biological connections across the landscape, maintaining plant diver-
sity, providing organic material to aquatic food chains, and controlling stream water temperature (Forman, 1999;
Gonzalez del Tanago and Garcia de Jalon, 2011). These functions are all related to the dimensions, longitudinal conti-
nuity and vegetation structure of riparian corridors (Gurnell et al., 2016), becoming particularly important in regions
with a Mediterranean-climate (Stella et al., 2013). In addition, riparian vegetation provides many other aesthetic and
economic benefits, including food resources (Pusey and Arthington, 2003).

4 | DISTURBANCE, PROTECTION, AND RESTORATION OF FLOODPLAINS
IN CENTRAL AND SOUTHERN EUROPE

Almost all large rivers in Central and Southern Europe are affected by dikes and other flood-protection measures, in
major catchments, such as the Rhine, Elbe, Danube and Oder, only 10–20% of the former floodplains are left as inunda-
tion areas (Brunotte et al., 2009). Only 10% of the original extent of European floodplain forests has been preserved,
most of which are located in Eastern Europe (Hughes et al., 2012). Areas with the best-preserved floodplain forests
remained in Croatia along the Danube and Sava Rivers (Ani�c, 2008). Many floodplain areas were drained in the past in

TABLE 1 (Continued)

Category of
service (CICES
section) Ecosystem function Class of ecosystem service (CICES v5) Parameter/indicator

Cultural Recreation Characteristics of living systems that
enable activities promoting health and
wellbeing, recuperation or enjoyment
through active or immersive interactions;
Characteristics of living systems that
enable activities promoting health,
recuperation or enjoyment through
passive or observational interactions

Possibility to experience the terrain,
Presence of protected areas, Water
surface area, Presence of sandbanks
and meanders, Visibility depth,
Minimum width for (non-) motorized
boating26; Frequency of tourists per
year27; Content of geotagged
photographs uploaded to social media
sites28,31,32; Diversity of potential for
nature experiences29; Recreation
potential, Recreation opportunity
spectrum30

Heritage Characteristics of living systems that are
resonant in terms of culture or heritage

Density of monuments and cultural-
historical facilities, Density of
archeological and natural
monuments26; Content of geotagged
photographs uploaded to social media
sites28,32

Aesthetic values Characteristics of living systems that
enable aesthetic experiences

Landscape diversity, naturalness and
uniqueness26,33; Level of aesthetic
value27; Content of geotagged
photographs uploaded to social media
sites28,32

Note: Source: authors. 1Posthumus et al. (2010); 2Felipe-Lucia et al. (2014); 3Boithias et al. (2016); 4Ausseil et al. (2013); 5Morri et al. (2014) 6Larsen et al. (2012);
7Fu et al. (2013); 8Nin et al. (2016); 9Grygoruk et al. 2013; 10Peh et al. (2014); 11Pithart et al. (2010); 4Ausseil et al. (2013); 12Karpack et al. (2020); 13Ghaley
et al. (2014); 14Peters (2016); 15Johnson et al. (2012); 16Ncube et al. (2018); 17West et al. (2011), 18Smith et al. (2013); 19Serna-Chavez et al. (2017); 20de Bello
et al. (2010); 21Alkama and Cescatti (2016); 22Tomscha et al. 2017; 23Gonzalez del Tanago et al. 2011; 24Fischer et al. 2019; 25Sej�ak et al. (2010); 26Thiele
et al. 2020; 27Ajwang' Ondiek et al. 2016; 28Ghermandi et al. 2020; 29Funk et al. (2020); 30Grizzetti et al. (2019); 31Tieskens et al. (2018); 32Hale et al. (2019);
25Thiele et al. (2020); 33Thiele et al. (2019). CICES stands for the Common International Classification of Ecosystem Services developed by the European

Environment Agency (EEA).
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order to intensify agricultural use, for example in Slovakia (Holubov�a et al., 2003), in the Czech Republic (Br�azdil
et al., 2011) or in Hungary in large parts of the Tisza lowland basin (Szma�nda et al., 2008). Recently, urbanization and
the development of new transport routes along river valleys with associated channelization works are another threat to
floodplains, particularly in some Mediterranean countries and in the more recent accession countries of Central Europe
(Hughes et al., 2012). The construction of dams also has a significant impact on floodplains, not only affecting the area
inundated by the construction of a waterworks, but the sediment starvation downstream of dams has perhaps the
greatest potential to impact on floodplain development. According to Marren et al. (2014), we can identify several ways
in which floodplains could potentially be affected by dams, with varying degrees of confidence, including a distinction
between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and
functions). According to EEA (2018), 15% of the European population lives in floodplains, rising to 25% in Austria, Slo-
vakia and Slovenia. In Southern Europe, problems with water supply to agriculture have led to an intensive river regu-
lation strategy, including the construction of reservoirs in upland valleys (Hughes et al., 2012). Many lowland rivers
have been realigned to maximize agricultural production. These rivers are among the most regulated in the world
(Magdaleno and Fern�andez, 2011), which is reflected in the poor ecological condition of their floodplains. The conclu-
sion of the study by Kuiper et al. (2014), based on a meta-analysis of the scientific literature, was that altering of a natu-
ral flow regime reduces mean species abundance (MSA) of floodplains by more than 50% on average, and species
richness by more than 25%. The effects on species richness and abundance tend to be related to the degree of hydrologic
alteration. A list of the most common causes of floodplain ecosystem degradation and corresponding mitigation mea-
sures, usually taken in Central and Southern Europe can be found in Table 2.

As floodplains are valuable ecosystems that provide a range of ecosystem functions and services, it is necessary to
address their protection and implement selected measures to ensure that their environmental values are maintained or
restored (Hughes et al., 2008). According to EEA (2018), the protection and restoration of European floodplains is pro-
moted within environmental policy, but only indirectly required—i.e., by the Water Framework Directive—WFD
(2000/60/EC), the Floods Directive (2007/60/EC), the Habitat (1992/43/EEC) and Birds—HBD (1979/409/EEC) Direc-
tives, the EU 2020 Biodiversity Strategy, the Green Infrastructure initiative, the EU Climate Change Adaptation Strat-
egy, and the Ramsar Convention. As the protection of such human altered floodplains along large European rivers is
one of the objectives of the WFD and HBD (Funk et al., 2019), achieving these objectives require detailed planning of
various compromise solutions that are ecologically, commercially, and socially acceptable (Rouquette et al., 2011). In
addition to European legislation, the floodplains or at least some of the ecosystems found in Europe (e.g., floodplain for-
ests or wetlands) are subject to legal protection at the level of individual countries. To illustrate the different approaches
to floodplain management, here we outline the current situation in several Central and Southern European countries.
In the Czech Republic floodplains are protected by law; according to Act No. 114/1992 Coll., a floodplain area is consid-
ered a “significant landscape element.” From a practical point of view, this form of floodplain protection is not
completely effective, as it is not clear how to approach the protection of already partially degraded floodplains. The

TABLE 2 The most common causes of floodplain degradation in central and southern Europe and appropriate measures to mitigate the

effects of degradation (Source: authors)

Cause of floodplain degradation Mitigation measure(s)

Drainage and riverbed reinforcement
due to agricultural activities

River restoration (reestablish morphological river type and lateral connectivity), set initial
measures for type-specific self-development of the river/the floodplain system, detention
ponds construction, adopt ad hoc crop rotations and agricultural practices (tillage systems,
soil cover management, etc.), check and rebuild old drainage systems.

Urbanization and transport
infrastructure development

Develop urban green infrastructure and stormwater drainage management.

Technical/structural flood protection
measures limiting lateral floodplain
connectivity (embankment)

Creation of room for river (polders and areas suitable for periodic flooding) to alleviate floods
where possible.

Dam construction and construction of
torrent controls

Mitigate hydropeaking, implement fish bypasses and modify migration barriers in order to
reestablish longitudinal continuum; remove or reconstruct torrent controls in headwater
areas.

Land-use/land cover changes Floodplain habitat restoration, modify land-use (afforestation of unused land a pastures).
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same law provides for better protection of floodplains only if they are located in core zones of large-scale protected areas
or in small-scale protected areas. In addition, floodplain protection is hampered by the absence of datasets that capture
the precise spatial extent of floodplain ecosystems. Although floodplains in the Czech Republic represent a significant
part of the landscape, covering approximately 10% of the total area of the country (Štěrba, 2008), ineffective legal protec-
tion has led to extensive degradation in the past and it is currently difficult to implement large-scale restorations that
would improve the ecological condition of floodplains. Instead of complex restoration of floodplain ecosystems, these
areas are more often subjected to construction of various flood protection measures, aimed at protecting residential and
industrial infrastructure located directly in flooded areas (Loučkov�a, 2014). Whether it is a structural measure located
in the urban area of a floodplain (e.g., artificial levee or solid concrete wall) or outside urban areas (e.g., polder), all
these measures affect biodiversity and the quality of ecosystem functions and services provided. While flood control
measures implemented outside urban areas usually have a positive effect on several different ecosystem functions, on
the contrary, measures implemented in built-up areas usually degrade many ecosystem functions. The poor condition
of riparian habitats in the Czech Republic is also related to the practical maintenance of the River Basin Management
Authorities based on the “Water Act” (No. 254/2001 Coll.), which aims to ensure sufficient space for the water flowing
in the riverbed by cutting down forests on the riverbanks.

More often than entire floodplain areas, their individual parts (specific ecosystems or habitats) are protected by law;
for example, in Slovakia, where wetlands, bogs or peat bogs, wet meadows, natural flowing waters and natural standing
(lentic) waters are protected under Act No. 543/2002. There are no specific maps of floodplain areas in Slovakia; how-
ever, background materials are available that can be considered as proxy data of floodplain distribution—e.g., maps of
Quaternary deposits (Maglay et al., 2009), soil maps (Hraško et al., 1993), or potential primary vegetation (Michalko
et al., 1986). One of the most important localities where the protection of natural values of the floodplain is addressed
in Slovakia is the great floodplain of the Danube River. An example of suitable measures to increase the environmental
values of the floodplains is the LIFE project “Conservation and Management of Danube Floodplain Forests”, which
focuses on the conservation of the last remaining natural floodplain forests in the Slovak part of the Danube floodplain
and the introduction of sustainable forest management in this area (BROZ, 2003). Restoration measures such as
reconnection of meanders with the river system, increase of flow dynamics, excavation of sediment deposits from the
meanders, and a special mowing scheme have been proposed and partially implemented to conserve the natural values
and the derived human benefits (Holubov�a et al., 2003). Restoration of the Danube floodplain in Slovakia is perceived
as an important factor in improving environmental values, as it is a highly anthropogenically modified area. Major
interventions in this area include, for example, the construction of the Gabčíkovo waterworks, leading to a slow degra-
dation of rare and endangered habitats of softwood floodplain forests in the Danube inland delta—see Figure 3
(Petr�ašov�a-Šibíkov�a et al., 2017).

In Slovenia, conditions and limitations related to construction and activities in floodplain areas are defined by the
“Decree on conditions and limitations for constructions and activities on flood risk areas” (PISRS, 2020). This regulation
mentions the flooding and erosion processes of surface water and sea. The methodology that should be used to define
endangered floodplain is determined by the “Rules on methodology to define flood risk areas and erosion areas con-
nected to floods and classification of plots into risk classes.” These rules use the concept of 10-year, 100-year, and
500-year return periods. Moreover, in relation to flood risk, the “Water Act” should also be mentioned. As a result of
this legislation, flood hazard maps for various parts of the country have been prepared. However, since the adoption
of this law about 10 years ago, a lot of construction has already taken place in floodplains, especially near the larger cit-
ies such as Ljubljana and Celje (e.g., Glavan et al., 2020). The floodplain area, defined based on the extent of flooding
during the 100-year return period, where much of the urban development of the city of Ljubljana in Slovenia is located,
is shown in Figure 4. The strong dependence of the floodplain extent on the terrain characteristics is a major drawback
of this hydrological (hydraulic) approach, since in the case of urban areas or localities with traffic embankments, the
course of the floodplain borderlines is intensively modified.

River lateral connectivity with floodplains is essential to create and maintain habitats for animals and plants, ensure
ecosystem services and integrity, enhance carbon sequestration and storage (Wohl et al., 2017). A case study of the Orco
River (North-Western Italy) is used to demonstrate how maintaining an adequate width of the river corridor and sus-
taining lateral river migration can be used as an effective solution to (a) mitigate flood risk, (b) minimize damage to
transport infrastructure, (c) support the objectives of the EU Water Framework, Floods and Habitat Directives. The
Orco river basin has a total area of about 910 km2, of which 78% is located in the Alpine mountain range and 22% in
the Po Valley plain. The Orco River flows on the southern slope of the Gran Paradiso massif, where an area of 11 km2

is currently occupied by glaciers. In the Po Valley plain (between the municipality of Cuorgnè and the confluence with
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the Po River near Chivasso municipality), the river is characterized by a wandering morphology with a significant lat-
eral migration of bends, due to the intense sediment transport during the autumn and spring floods. Thanks to moder-
ate anthropogenic pressures, the Orco River corridor still preserves a riparian forest in the floodplain, located between
the river banks and the terraces. In late October 2019, a significant meander chute-cut occurred near San Benigno Can-
avese village (Figure 5), with a consecutive evolution of the chute channel in 2020. The chute channel has been formed
in the floodplain peninsula enclosed by the meander loop, resulting in gradual closure of the abandoned channel. The
chute channel is currently continuing to incise and widen into the floodplain. This process naturally preempted and
avoided the realization of a river engineering measure envisioned by the authorities to reduce lateral bank migration
towards the highway. The formation of this new channel did indeed reduce flood risk across the right river bank, mini-
mizing possible damages to the highway and to the San Benigno Canavese village (Figure 5). The river bank protection
by riprap at the outer bend of the meander is also currently not necessary because, after 16 months, the chute channel
is acting as the main channel, conveying the discharge during the majority of time. The shortening of the river

FIGURE 3 Danube floodplain forest near the Gabčíkovo waterworks, Slovakia

(Source: Jaroslav Jankovič)

FIGURE 4 Significantly urbanized floodplain area (defined as the extent of flooding of the 100-year return period) of Ljubljanica River

and its tributaries in the eastern part of Ljubljana, Slovenia

(Source: Geoportal ARSO, 2020)
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centerline has also resulted in increase in water gradient, with the consequent generation of erosion waves slowly
migrating upstream, which will likely affect the hydraulic geometry upstream of the chute.

Water regulation in Italy provides for a very extensive stratification of planning competence, involving the national
level, the regional administrative level and intermediary authorities whose sphere of influence extends beyond tradi-
tional administrative boundaries, such as the basin authorities (Salvati et al., 2012). This complex management frame-
work often collides with the urgency of controlling, managing and regulating water flows in a very complex socio-
economic context, such as in Italy and, more generally, Mediterranean Europe (e.g. Chelleri et al., 2015). Informal set-
tlements spreading in the floodplain areas without considering sufficient buffer zones have sometimes led to severe con-
ditions not only for ecosystems, but also for human health and life (Chelli et al., 2016; Ciommi et al., 2017; Gigliarano
and Chelli, 2016). These situations are exacerbated by erosive processes due to land use changes, fires, landslides and
abandonment of marginal lands (Salvati and Zitti, 2009; Salvati et al., 2011). Regional planning has mainly acted
through integrated tools, which involved regional landscape plans, provincial coordination plans, river basin plans and
planning at a more detailed scale of intervention, allowing both water regulation in contexts of particularly intense
meteoric inflows, and emergency water management under drought conditions to be organized fairly effectively
(e.g. Bajocco et al., 2012). Environmental policies at national and regional level have privileged the protection of relict
floodplains in northern Italy, especially in flat areas, allowing the creation of habitats with high biodiversity, rep-
resenting the natural extension of rivers with an alpine water regime (Smiraglia et al., 2016).

5 | DISCUSSION AND CONCLUSIONS

This article provided comparative insight into different approaches to floodplain delineation and outlined a conceptual
nexus between floodplains and ecosystem functions, both illustrated with case studies. It is worth reiterating that direct
human intervention (e.g., Entwistle et al., 2019; Lewin, 2013; Westra and de Wulf, 2006) can be seen as a major cause
of floodplain ecosystem degradation, most evident in the urban landscape. There, the floodplain area is built-up and
natural ecosystem functions are reduced due to loss of connectivity with the watercourse caused by river bank fortifica-
tion and construction of levees along the river (e.g. Hein, van Koppen, et al., 2016 or Amoateng et al., 2018). In the agri-
cultural landscape, the quality of ecosystem functions performed by the floodplain area is negatively affected by
significant human-induced channel incision and narrowing, resulting in a lowering of the water table. As cropland is
the most prevalent land-use category in floodplains in the Central and Southern European countries (cropland occupies
between 40% and 60% of floodplain area according to EEA, 2018), the above anthropogenic interventions are the most

FIGURE 5 A meander chute cut-off on the Orco River near San Benigno Canavese village, Italy

(Source: Paolo Maschio, Politecnico di Torino)
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common cause of reduced ability of floodplains to perform ecosystem functions. Drainage and replacement of flood-
plain forests by agriculture, primarily fields and meadows, is most common (Klimo et al. 2008), resulting in loss of
inundation areas and increasing sediment and nutrient delivery to the river (van Andel and Aronson 2012).

Based on the above examples, it can be concluded that floodplain protection is at a different stage of development in
each country and has different preferences. Since all floodplains in Central and Southern Europe are very intensively
anthropogenically used and no change can be expected, multifunctional floodplain management can be seen as a solu-
tion to ensure the sustainable use of these areas. Multifunctional floodplain management can be defined as a manage-
ment approach that aims at a balanced provision of multiple ecosystem services that serve the needs of local residents.
Existing trade-offs imply the need of provisioning services reduction to decrease their dominance (Schindler
et al., 2014). Landscapes can be enhanced by adding (or maintaining) semi-natural landscape features designed to pro-
vide multiple ecosystem services (Lovell and Johnston, 2009). The importance of investing in natural ecosystems, in
particular urban green spaces, floodplains and areas for recreation, is recognized as a source of economic development
in EU regional and cohesion policies (COM, 2011). In Germany, for example multifunctionality is to some extent
included in legal regulations – the Federal Water Resources Act requires water managers to preserve, protect and even
enhance natural habitats in order to manage water resources sustainably (Schindler et al., 2016).The solution to these
ecologically unsatisfactory conditions, coupled with increased flood risk, is possible through the restoration of a water-
course or an entire floodplain (Keesstra et al., 2018). In order to find the optimal combination of spatially distinct large-
scale and small-scale measures to increase habitat availability for all relevant species, detailed spatial planning is an
important component of floodplain restoration (Remm et al., 2019). Weigelhofer et al. (2020) consider a combination of
multiple-species (aiming at restoring natural hydrological dynamics) and single-species approaches (focusing on the
conservation status of individual species) as a sound basis for decision-making processes in floodplain restoration in
accordance with the EU Water Framework Directive and the Birds and Habitat Directives, as well as local legislation.

To ensure both ecologically and socially viable restoration efforts, future research should explore the following
uncertainties and trade-offs. First, a proper delineation of current floodplains should take into account the legacy of
Late Holocene climatic oscillations that influence the magnitude of sediment fluxes in floodplains (Stacke et al., 2014),
as well as the legacy of past human activities (Swinnen et al., 2020, 2020). Decoupling the cause–effect feedback
between these processes is difficult (Hoffman and Rohde, 2011), but crucial for establishing historical baselines of flood-
plain restoration to improve ecosystem functions. Second, given the uncertainties associated with ongoing climate
change and its spatio-temporally varying impacts, floodplain management must consider the different scales at which
socio-ecological systems are transformed (Liu et al., 2007), including (a) variations in floodplain adjustment processes
(Chin, 2006), (b) the existing mismatches between the scales of ecohydrological processes and those of planning and
policy interventions (Raška et al., 2019), and (c) complicated and dynamic property rights and tenure systems
(Hartmann, 2009) and the social importance of floodplains (Richards et al., 2017). These issues point out the necessity
to balance ecosystem functions with the livelihood benefits of direct floodplain use (Juarez Lucas and Kibler, 2016).
Awareness of the social significance of floodplain ecosystems is likely to be a key element in improving the overall eco-
logical conditions of floodplains and ensuring their sustainability, as only an awareness of this fact can lead to restora-
tion efforts being supported by floodplain landowners.
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