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Abstract
Accurate forecasts of daily runoff are essential for facilitating efficient resource
planning and management of a hydrological system. In practice, daily runoff is
needed for various practical applications and can be predicted using precipitation
and evapotranspiration data. To this end, a long short-term memory (LSTM) under
a cascade framework (C-LSTM) approach is proposed for forecasting daily runoff.
This C-LSTM model is composed of a 2-level forecasting process. (1) In the first
level, an LSTM is established to learn the relationship between the precipitation
and evapotranspiration at present and to learn several meteorological variables one
day in advance. (2) In the second level, an LSTM is constructed to forecast the
daily runoff using the historical and simulated precipitation and evapotranspiration
data produced by the first LSTM. Through cascade modeling, the complex features
of the numerous targets in the different stages can be sufficiently extracted and
learned by multiple models in a single framework. In order to evaluate the
performance of the C-LSTM approach, four mesoscale sub-catchments of the
Ljubljanica River in Slovenia were investigated. The results indicate that based
on the root-mean-square error, the Pearson correlation coefficient, and the Nash-
Sutcliffe model efficiency coefficient, the proposed model yields better results than
two other tested models, including the normal LSTM and other neural network
approaches. Based on the results of this study, we conclude that the LSTM under
the cascade architecture is a valuable approach and can be regarded as a promising
model for forecasting daily runoff.
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1 Introduction

Runoff forecasting is extremely important for water resource management. Due to the
influences of multiple factors, such as precipitation and evapotranspiration, runoff time series
exhibit nonlinearity, time-varying characteristics, and indeterminacy, thus making it difficult to
accurately forecast runoff (Lei et al. 2014). In order to address this issue, many models, such as
data-driven methods, have been established and reported in the literature.

The statistical forecasting model (i.e., the Box–Jenkins model) is a classical method for
time series forecasting (Box et al. 2013). This technique can yield a good performance when
the forecasting conditions are within the scope of the modeling conditions, but it produces poor
results when the conditions are outside or near the limits of the past observations incorporated
into the model. Furthermore, the Box-Jenkins model is assumed to follow the assumptions for
a stationary univariate process (Wang et al. 2015). Accordingly, it is not suitable for runoff
time series modeling since actual hydrological systems are multivariate and non-stationary.
Artificial intelligence (AI)-based modeling (Badrzadeh et al. 2015) can be regarded as a
promising approach, with characteristics such as adaptive learning, a non-fixed mapping
structure, and rapid convergence. For instance, in a comparative study of these methods, AI
modeling produced better daily forecasting results than the traditional statistical methods
(Sudhishri et al. 2016). Moreover, AI models such as the artificial neural network (Nourani
2017), support vector machine (Zhao et al. 2017), and deep learning model (Bai et al. 2016; Li
et al. 2016) have been used on several occasions to simulate the complex characteristics of
hydrological systems. These AI models achieved better forecasting results, but time series
forecasting remains a bottleneck due to the long-term dependencies. To address this issue, long
short-term memory (LSTM), which is one of the most popular types of recurrent neural
networks (RNNs), has recently been proposed and employed in various fields (Karim et al.
2018; Srivastava and Lessmann 2018; Xu and Niu 2018). These studies indicate that the
LSTM performs better in long time-horizon forecasting than other AI methods. However, only
a few studies have investigated the use of LSTM for runoff forecasting (Yuan et al. 2018; Feng
et al. 2020; Xiang et al. 2020). For daily rainfall-runoff modeling, different types of models
can be applied, such as physically-based models and conceptual models. These types of
models usually take into account the main characteristics of rainfall-runoff processes. How-
ever, a recent study by Sezen et al. (2019) indicated that selected AI models yield results
comparable to those of the tested lumped conceptual model in particular catchments.

Precipitation (P) and evapotranspiration (E) are more closely related to runoff than other
variables (Coulibaly et al. 2015) such as wind speed or sunshine duration since P and E are the
main processes affecting runoff formation at the catchment scale, i.e., P and E have a dynamic
hydrological balance (Berghuijs et al. 2017). Furthermore, it should be noted that P and E are
also related. Moreover, several other variables such as soil moisture that can be remotely
measured can affect runoff generation. In forecasting, P and E are unknowns, as is daily runoff
(Q). Furthermore, P and E forecasts are usually used as inputs in calibrated hydrological
models for forecasting Q (Jain et al. 2018).

In many catchments, discharge data are not available and/or where the precipitation stations
are sparse the forecasting performance is limited. Even with detailed hydro-meteorological
measurements, due to the complexity of catchment processes, the performance of rainfall-
runoff models can always be improved and new methods should be tested to enhance the
performance of rainfall-runoff modeling. Thus, the cascade long short-term memory model (C-
LSTM) is proposed in this study. Using the cascade framework, different feature mappings can
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be constructed and transferred into the final target model. Using the LSTMmodel, the features
(i.e., the lags of unknown duration between important events in a time series) hidden in a long-
term time series can be captured and learned by the RNN architecture. In this study, the first-
level LSTM was established to forecast P and E at time step t + 1 (P(t + 1), E(t + 1)) using
several meteorological variables at time step t. Then, the second-level LSTM was used to
forecast Q(t + 1) using P(t + 1) and E(t + 1) values and P(t) and E(t). Moreover, Q(t) was also
used in the second-level LSTM. Thus, the short-term correlations and long-term dependencies
can be merged in a single cascade forecasting model, which is the main contribution of this
study.

To verify the performance of the proposed model, four mesoscale catchments located in the
non-homogenous karst Ljubljanica River catchment (Slovenia) with different geological
characteristics were investigated. It is a well-known fact that model performance decreases
with increasing lead time (i.e. forward forecast time) (Jain et al. 2018). The relationship
between the decrease in the model’s performance and the lead time depends on the catchment
characteristics such as size, land use, geological structure, and hydro-meteorological network
quality. For example, better modeling results can be obtained for longer lead times in larger
catchments than in smaller catchments with torrential characteristics (Bai et al. 2019). In the
case of mesoscale catchments, one- or two-day lead times are important since the forecasting
performance for longer lead times can be questionable. The most relevant lead time can be
determined based on the autocorrelation analysis purely from the time series perspective.
Furthermore, the forecasting lead time should be long enough to allow the authorities and
affected population to respond to a potential disaster. Thus, the lead time basically represents
the forecasting forward time. In the case of mesoscale catchments, use of hourly data would be
more meaningful for effective flood forecasting. Such data are often unavailable and the daily
time step can be regarded as sufficient for applications such as reservoir inflow modeling,
water supply modeling, and climate change impact modeling (Sapač et al. 2019; Sezen et al.
2020).

2 Methodology

2.1 Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM)

A recurrent neural network (RNN) is a type of artificial neural network that consists of an input
layer, a hidden layer, and an output layer. There are two differences between an RNN and a
traditional network such as feedforward neural network (FFNN) (Su and Lu 2017). (1) In the
same hidden layer there are connections between the nodes in an RNN, whereas in the FFNN
there are none. (2) The inputs of the hidden layer at the current time contain both the input
layer at the current time and the hidden layer at the previous time. The special structure of the
RNN (Fig. 1(a)) allows for a better description of the temporal dynamic behavior, because it
uses the previous information it has learned to model the pattern of the current step, which is
beneficial for sufficiently exploring the features of the current time series. Therefore, in this
study, an RNN with a memory function was investigated and applied in the time series
forecasting.

In practice, an RNN cannot maintain a good memory if the time interval is large and has a
vanishing gradient problem (Gers et al. 2000). Therefore, various improved RNN models have
been introduced such as an LSTM with the simple structure (Fig. 1(b)) that has been widely
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utilized for time series forecasting in various fields. The LSTM computes its memory units
using different activation functions. However, thus far, its application to hydrological data has
been limited.

The LSTM unit with peephole connections includes an input gate (IG), an output gate
(OG), and a forget gate (FG) (Fig. 1(b)). By using this special interactive operation among
three gates with a memory cell (c in Fig. 1 (b)), which serves as an accumulator of the cell
state, the LSTM can mitigate the vanishing gradient effect of long-term dependencies. The
computing process of the LSTM with peephole connections is briefly described below (Gers
et al. 2000).

(1) For the t-th time step, the information of the new inputs xt will be accumulated to the cell
if the IG is activated as a sigmoid function It = σ(wxixt +whiht ‐ 1 +wci × ct ‐ 1 + bi).

(2) At the same time, the FG evaluates which information to eliminate from the previous cell
state, using Ft = σ(wxfxt +whfht ‐ 1 +wcf × ct ‐ 1 + bf).

(3) The old cell status ct-1 will be updated to the new state ct = Ft × ct ‐ 1 + It × tanh(wxcxt +
whcht ‐ 1 + bc).

(4) The updated cell state ct is passed through “tanh” function and multiplied by the sigmoid
activation function of the OG to determine the final output from LSTM unit ht. This is
expressed as ht =Ot × tanh(ct), where Ot = σ(wxoxt +whoht ‐ 1 +wco × ct + bo).

Fig. 1 Unfolded basic RNN structure (a) RNN: x: input nodes; h: hidden nodes; o: output nodes; w: shared
parameters in each layer and LSTM unit with peephole connection (b) LSTM
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In the steps above, wxi, wxf, wxo are the input weights; whi, whf, who denote the recurrent
weights; wci, wcf, wco represent the peephole weights; bi, bf, bc, bo are the bias vectors; and “×”
represents point-wise multiplication. In this way (the cell state accumulating activities over
time), the LSTM can discover the long-term features.

2.2 Present Model: Cascade LSTM (C-LSTM)

Recently, the LSTM approach has been demonstrated to be effective at handling temporal
correlations (Li et al. 2017; Liang et al. 2020), although in practice some limitations inevitably
exist. For instance, the target value at the current time t is not only related to the variables at
previous times (e.g., t-1), but it is also connected to the variables at the current time t.
However, the variables at the current time are nonexistent in reality since they coexist with
the target value to be forecasted (Q in this case study). To address this issue, cascade modeling
was utilized in this investigation. The cascade model is composed of many sub-models, which
are independent and complementary in feature extraction and mapping. The C-LSTM has k
levels, and the LSTM model is applied for the time series forecasting in each level using the
different input variables, which are composed of the learning results from the previous level
and the corresponding new inputs (Fig. 2). Using the cascade architecture, the mixed time
series characteristics are identified at different levels, which may effectively reject vague
patterns.

By combining this theory and Fig. 2, the proposed method can be summarized as follows:

(1) Collect and rescale the original data.
(2) Divide the data into training (90%) and testing (10%) data.
(3) Train the C-LSTM model. The training data are divided into k categories according to

pattern identification based on the research target. For example, first the [P, E] are
forecasted through other variables (LSTM 1), and then the forecasted values ([P, E])
are used to forecast Q (LSTM 2). Because there are two sub-targets, the dataset identifies
two patterns.

(4) Test the trained C-LSTM model by dividing the testing data as in the previous step and
forecasting the target variable.

3 Case Study

3.1 Study Area and Dataset

The Ljubljanica River catchment is part of the Sava River catchment, which drains into the
Danube River. In this study, four mesoscale sub-catchments located in the larger Ljubljanica
River catchment were examined (Fig. S1). The basic properties of the investigated catchments
and a list of the stations used for the specific catchments are presented in Table 1. Some of
these catchments have already been investigated in previous studies (Bezak et al. 2017; Sezen
et al. 2019; Rusjan et al. 2019).

In this study, the following variables were used and a daily time step was selected: runoff
(Q), precipitation (P), air temperature (T), evapotranspiration (E), wind speed (WS), sunshine
duration (SD), saturation vapor pressure deficit (SVP), and relative humidity (RH). These
variables were selected based on the data availability and because they have at least a minor
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connection to runoff generation. For the meteorological variables (T, E, WS, SD, SVP, and RH)
Ljubljana and Postojna stations were used since the necessary data were only available from
these stations. More information about the SVP calculations and the impact of the investigated
meteorological variables on the evapotranspiration can be found in Maček et al. (2018). A total
of 17 years’ of data (2000–2016) were utilized for the model calibration. The statistical
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Fig. 2 Flow chart of the proposed Cascade LSTM approach (C-LSTM)

Table 1 Main properties of the investigated catchments and selected discharge stations (located at the outlet of
the catchment as shown in Fig. S1), precipitation, and meteorological stations (evapotranspiration, temperature,
wind speed, sunshine duration, relative humidity, and saturation vapour pressure deficit data)

River Discharge
gauging
station

Catchment
area [km2]

Min/Mean/Max
catchment elevation
[m.a.s.l.]

Mean
catchment
slope [°]

Precipitation
station

Meteorological
station

Cerkniščica Cerknica 50 562/712/1113 ~9 Cerknica Postojna
Gradaščica Dvor 79 343/616/1020 ~16 Postojna Postojna
Nanoščica Mali Otok 51 516/578/993 ~5 Črni vrh Ljubljana
Šujica Razori 47 299/425/880 ~11 Šentjošt Ljubljana
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properties of these data are summarized in Table 2 in order to present the main hydro-
meteorological characteristics of the investigated area.

3.2 Experiment Design

According to the modeling procedure, all of the data were rescaled into [0, 1] and were divided
into training (2000–2014, total of 5479 days) and testing (2015–2016, total of 731 days)
subsets.

The daily Q is closely linked to the daily P and E, but the forecasted value and the
values of these variables for the same day are unknown. Hence, P and E should be
estimated before Q modeling. Furthermore, other meteorological variables affect P and
E (Maček et al. 2018). It should be noted that the correlation between P and E is
negative and rather weak with a Pearson correlation coefficient of −0.11 to 0.13.
Therefore, in this study, the proposed C-LSTM model was composed of two forecast-
ing system levels (k = 2) (Fig. 2). Specifically, the mapping of the first LSTM level was
between the meteorological variables (T, WS, RH, SD, and SVP) and P and E, while the
input-output structure of the second LSTM level was the pattern ([P, E]→Q). Table 3
presents the input-output structure of the C-LSTM according to Fig. 2. For comparison,
the basic LSTM model and a typical network (i.e., FFNN) are also listed in Table 3.
Two input scenarios were designed for a single application of the LSTM to investigate
the influence of the other meteorological variables on the model’s performance. That is,
LSTM (I) considers all of the variables at t time which is in line with the variables of
the C-LSTM, whereas, the LSTM (II) only considers Q, P, and E at t time which is in
line with the variables of the second level of C-LSTM (LSTM2).

In addition, a convolution LSTM network was constructed in this study (i.e., s = 2, Fig. 2).
The two hidden layers contain LSTM neurons for exploring temporal dependencies. The other
layer consists of normal neurons for regression, and it makes use of the temporal features
calculated in the previous layers and provides the final forecast. Based on the pre-experiments
(i.e., trial and error method, in which the number of neurons in each hidden layer is set to be 5,
10, and 20), the first and second LSTM layers contained 20 and 10 neurons, respectively. The
other computation parameters were set as mini-batches with 30 size, 100 epochs, and training
rate of 0.05 at the beginning (scaling ratio of 0.1with a drop period of 30).

The root-mean-square error (RMSE), the Pearson correlation coefficient (R), and the Nash-
Sutcliffe model efficiency coefficient (NSE) were employed to evaluate the models’
performance.

Table 2 Statistical properties of the variables used in this study

Variables Maximum Mean Minimum

Q (mm) 47.2/61.6/107.8/38.4 1.6/2.5/2.2/2.4 0/0/0/0
P (mm) 144.2/178.6/130.8/132.4 4.2/4.4/4.6/4.0 0/0/0/0
E (mm) 7.3/7.7/7.7/7.3 2.2/2.2/2.2/2.2 0/0/0/0
T (°C) 27.7/29.6/29.6/27.7 10.0/11.6/11.6/10.0 −11/−10.8/−10.8/−11
WS (m/s) 11.8/7.7/7.7/11.8 2.5/1.3/1.3/2.5 0/0/0/0
RH (%) 99/100/100/99 76.3/74.7/74.6/76.2 29/31/31/29
SD (h) 14/15/15/14 5.4/5.4/5.4/5.4 0/0/0/0
SVP (kPa) 2.3/2.6/2.6/2.3 0.5/0.5/0.5/0.5 0.01/0.02/0.02/0.01

Label “/” is used to separate stations Cerkniščica, Gradaščica, Šujica and Nanoščica respectively
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4 Results and Discussion

Based on the experimental design (Table 3), P and E were modeled using the first-level
LSTM. The validation results (Fig. 3) suggest that the LSTM approach was able to
model the P and E dynamics. Moreover, the R value between the modelled and
observed precipitation ranged from 0.60 to 0.67 while R between the modelled and
measured evapotranspiration data ranged from 0.90 to 0.92. Thus, a relatively suitable
model performance can be obtained. Due to the precipitation generation characteristics,
some deviations between the modeled and observed values did occur in the precipita-
tion forecasts, meaning that the next-day P often had a limited connection to the
previous-day P. This is especially evident in areas with frequent thunderstorms, which
is also the case in the studied area with a temperate continental climate where
thunderstorms with high erosive power frequently occur. This sort of modeling results
was expected because evapotranspiration is influenced by the selected input variables
such as T or SVP and thus, it generally exhibits more significant seasonal characteris-
tics, with higher values in the summer and lower values in winter, while the day-to-day
variations are smaller (Fig. 4).

Using the forecasted P and E, the second-level LSTM was used to forecast the daily Q.
(Table 3, Figs. 4, S2-S4).

Figure 4 suggests that the second-level LSTM model can sufficiently learn the
relationship between the inputs (Q(t), P(t), E(t), P(t + 1), and E(t + 1)) and the output
(Q(t + 1)). As can be seen from Fig. 4, the model was able to satisfactorily reproduce
the discharge dynamics for all four catchments. In addition, the scatter plots exhibited a
high fitting degree (R = 0.92–0.95) between the observations and the forecasts, but
Šujica (Fig. S3) displayed deviations between the 200th and 350th day. It should be
noted that the investigated catchments are geologically nonhomogeneous. The geology
of the Gradaščica and Šujica catchments is dolomite and incomplete karst. However,
the Nanoščica and Cerkniščica catchments are located in areas with impermeable
surfaces and underground flow through the karst edges and the high karst area in
Notranjska (Sezen et al. 2019). In spite of these differences, the C-LSTM model was
able to adequately forecast the daily runoff.

Furthermore, in order to study the distributions of the residual error (absolute error), violin
plots of the absolute errors are plotted (Fig. 5). The absolute errors of C-LSTM model were
characterized by a quasi-normal distribution with a mean near 0. The ranges of the main errors
were [−5, 7], [−7, 6], [−9, 7], and [−6, 8] for the Cerkniščica, Gradaščica, Šujica, and
Nanoščica catchments, respectively. The margin of the cumulative contributions beyond 0.9
was [−2, 2].

Table 3 Input-output structure of different models. The variable with the caret “^” means the forecasted value

Model Input variables Output

C-LSTM LSTM1: T(t), WS(t), RH(t), SD(t), SVP(t), P(t), E(t) bP(t+1), bE(t+1)
LSTM2: bP(t+1),b;E(t+1), Q(t), P(t), E(t) bQ(t+1)

LSTM (I) T(t), WS(t), RH(t), SD(t), SVP(t), P(t), E(t), Q(t) bQ(t+1)
LSTM (II) Q(t), P(t), E(t) bQ(t+1)
FFNN T(t), WS(t), RH(t), SD(t), SVP(t), P(t), E(t), Q(t) bQ(t+1)
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The qualitative analysis results are supplemented by the quantitative evaluation results. The
RMSE of C-LSTM model for four stations range from 0.79 to 1.47 mm, and the NSE ranges
from 0.85 to 0.90 (Table 4). The comparison of the efficiency criteria results of the C-LSTM
model and the lumped conceptual rainfall-runoff model reveals that in most cases the C-LSTM
model yielded better results. However, it should be noted that different data lengths were used
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Fig. 3 Results of the precipitation (left) and evapotranspiration (right) forecasted using the first level LSTM for
the validation period for four stations. a Cerkniščica (b) Gradaščica (c) Šujica (d) Nanoščica
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for the calibration and validation in these studies (e.g., Sezen et al. (2019) used 5 years’ of data
for validation). The rainfall-runoff process is characterized by a lag time (Jain et al. 2018),
which in the case of mesoscale catchments, can vary from a few hours to 1 or 2 days.
Therefore, in terms of Q(t + 1) forecasting, in some cases P(t) is more important than P(t +
1). In such cases the autocorrelation analysis (e.g., applying the autocorrelation test before the
modelling) can reveal the most suitable time steps (i.e., lag times) that need to be considered in

Fig. 4 Results of the runoff forecasted using C-LSTM, LSTM (I), LSTM (II), and FFNN models for the
Cerkniščica station. Results of other stations can be found in the Supplement Fig. S2–S4
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such models to obtain as optimal a model performance as possible. Moreover, other variables
can improve the modeling performance to some extent, and therefore, they were included in
the scope of this study.

To estimate the forecasting performance of the C-LSTM approach, the LSTM with two
input scenes and the FFNN model (Table 3) were used for a comparison study using the same
dataset. The computing parameters of both LSTM models (LSTM (I), LSTM (II)) were the
same as the C-LSTM settings. The FFNN was defined as follows: hidden layers = 1, hidden
nodes = 10, learning rate = 0.02, epochs = 500, and goal = 0.0001. Based on these parameter
settings, the forecasting results for Cerkniščica catchment are displayed in Fig. 5 and for other
stations in Fig. S2–S4 for all models, and their absolute error distributions are shown in Fig. 5.

The results for the four cases reveal that LSTM (I) can capture the dynamics of the daily
runoff for the validation period, but it failed at some peak discharge values (e.g., Cerkniščica
on the 500th day). Moreover, the scatter plots indicate that the forecasted values did not fit the

Fig. 5 Distribution of absolute errors of C-LSTM, LSTM (I), LSTM (II), and FFNN models for four stations

Table 4 Comparison of the forecasting performances using different models

Model
Case

C-LSTM LSTM (I)
RMSE (mm) R NSE RMSE (mm) R NSE

Cerkniščica 0.79 0.93 0.85 1.31 0.78 0.60
Gradaščica 1.02 0.93 0.87 1.89 0.75 0.54
Šujica 1.07 0.92 0.85 1.53 0.84 0.68
Nanoščica 1.47 0.95 0.90 2.04 0.90 0.80
Model
Case

LSTM (II) FFNN
RMSE (mm) R NSE RMSE (mm) R NSE

Cerkniščica 1.49 0.70 0.49 1.80 0.65 0.24
Gradaščica 2.13 0.68 0.42 2.40 0.60 0.26
Šujica 1.60 0.82 0.66 2.43 0.65 0.20
Nanoščica 2.34 0.86 0.74 2.46 0.84 0.71
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observations for values >10 mmwell (e.g., underestimation of the LSTMmodel for high flows
occurred for the Cerkniščica catchment). The results of LSTM (II) show that although it gets
good results, its performance decreases as the input variables decrease. The comparison with
LSTM (I) reveals that other meteorological factors (T, WS, RH, SD, and SVP) should also be
considered in the modeling. The FFNN was also unable to successfully model the peak
discharge values. The dispersion degree shown in the scatter plot of the observed and modeled
values was even greater than that of the LSTM structure, illustrating that the shallow structure
has lower capacity than the LSTM model.

All of the tested models reproduced the runoff dynamics (Figs. 4, S2–S4), although the
FFNN model had issues with the peak discharge modeling. The dispersion degree for the
LSTM (I) and LSTM (II) models was also larger than that of the C-LSTM model, especially
for the peak values. Additionally, the C-LSTM model had smaller errors compared to other
models, for which the distribution of the main errors extended to greater than 10 mm (Fig. 5).
Thus, the C-LSTM model also exhibits a superior performance for daily runoff forecasting,
demonstrating that it has the potential to enhance runoff modeling performances.

According to the quantitative evaluations (Table 4), the deep learning architecture methods
(C-LSTM and LSTM (I, II)) had lower RMSE and higher R and NSE values than those of the
shallow learning method (FFNN), illustrating the superiority of the deep networks. The LSTM
(I) that considered all of the meteorological factors had a better performance than the LSTM
(II) model, demonstrating that the extra inputs did not decrease the forecasting performance.
Moreover, the proposed C-LSTM model outperformed the LSTM (I), LSTM (II), and FFNN
models, as indicated by its lower RMSE and higher R and NSE values. The relative
performance ranking is C-LSTM (best), followed by LSTM (I), LSTM (II), and FFNN (worst),
revealing that the LSTM under a cascade framework can maximize the data using different
mappings in a single model, that is, the information is used to its fullest potential and the
features can be deeply explored. Therefore, the C-LSTM is beneficial for synchronously
learning the sophisticated features of the target variable and its influencing factors, and thus,
it exhibits a better capacity for daily runoff forecasting. Moreover, according to Morisai et al.
(2015), all NSE values >0.75 can be regarded as “excellent” modeling results for daily time
steps, which was the case in this study. This supports the arguments above regarding the
performance of the C-LSTM.

5 Conclusions

Considering the synchronous effects of precipitation and evapotranspiration, in this
study, two-leveled cascade long short-term memory (C-LSTM) model was applied for
daily runoff forecasting using the data from four mesoscale sub-catchments. The first
LSTM level was used to simulate the precipitation and evapotranspiration on the
current day. Then, these values were used as inputs for the second LSTM level, which
was established for the daily runoff forecasting. The C-LSTM model was demonstrated
to have a powerful feature learning ability, and it achieved a high forecasting accuracy
relative to the results of other methods and in terms of the three quantitative indices. In
summary, the C-LSTM model integrates the fractional modeling capacity of the cascade
framework with the recurrent deep learning ability of the LSTM, providing it with the
capacity to extract and learn coupled features affected by multiple factors, thus im-
proving its forecasting performance.
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The novelty of this study was the use of a cascade framework for different sub-task
modeling, which synchronously considers the dynamic changes in the variables and their
effects on the daily runoff. In addition, the LSTM considers both short- and long-term
dependencies, and thus, it has strong feature learning and time series modeling capabilities,
making this a novel attempt in the field of daily runoff forecasting. The results of this
investigation indicate that the C-LSTM model, which has not yet been frequently applied in
hydrology, demonstrates the ability to reproduce the hydrological characteristics (i.e., runoff)
on a daily time scale. Thus, the proposed model can be applied to other hydrological
applications in order to improve the modeling performance.
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