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Abstract: Conceptual rainfall-runoff models besides precipitation and discharge data generally
require estimates of the mean daily air temperature as input data. For the estimation of the mean daily
air temperature, there are different methods available. The paper presents an evaluation of the impact
of the mean daily air temperature calculation on the rainfall-runoff modelling results. Additionally,
other measured variables and rating curve uncertainty were assessed. Differences in the mean daily
air temperature values were evaluated for the 33 meteorological stations in Slovenia and additional
investigations were conducted for four selected meso-scale catchments located in different climates.
The results of the application of four equations for the mean air temperature calculation yielded the
mean absolute error values between 0.56–0.80 ◦C. However, the results of rainfall-runoff modelling
showed that these differences had an almost negligible impact on the model results. Differences in
the mean simulated discharge values were no larger than 1%, while differences in the maximum
discharge values were a bit larger, but did not exceed 5%. A somewhat larger impact on the model
results was observed when precipitation and water level measurements’ uncertainty was included.
However, among all analysed input data uncertainties, the rating curve uncertainty can be regarded
as the most influential with differences in the simulated mean discharge values in the range of 3%
and differences in the maximum discharge values up to 14%.

Keywords: mean daily air temperature; hydrological modelling; input data; Slovenia; rainfall-runoff;
conceptual model

1. Introduction

In recent decades, numerous rainfall-runoff models have been developed [1,2]. These types
of models can be used for various applications such as water management, engineering design,
climate change studies, risk management, etc. [3–7]. Precipitation and discharge data are the
main input variables in all types of rainfall-runoff models. In addition, some model types such
as conceptual (i.e., storage-based) rainfall-runoff models also require other input data such as potential
evapotranspiration [2]. Numerous equations are available for estimating potential evapotranspiration,
and, among them, some of the simplest ones require only air temperature data and a station location
to calculate potential evapotranspiration [8]. In addition, models with an included snow module
also require air temperature data to account for snow accumulation and melting processes since
temperature is the main driver of snow-rain partition [2,4,9,10]. Furthermore, it should be noted that
some models also require minimum and maximum air temperature values. For example, the Soil and
Water Assessment Tool (SWAT) model requires mean daily minimum and maximum air temperatures
for the individual month [11].

Since rainfall-runoff models are very often run on the daily time scale [2], estimates of mean
daily air temperature are required as input data. For the estimation of the mean daily air temperature,
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there are different approaches based on hourly data, maximum and minimum daily temperatures,
or on manual air temperature measurements at certain hours [12–18]. Although previous studies
showed that, in most cases, mean daily air temperature values using different equations yield similar
long-term mean values [12,13]. Additionally, some studies have investigated the effect of the potential
evapotranspiration time step (i.e., temporally varying or same seasonally variable) on the rainfall-runoff

model results and shown that the use of temporally varying potential evapotranspiration did not yield
systematic model improvements [19]. No significant differences in the estimation of the annual potential
evapotranspiration were detected when studying the effect of the climate data time step [20]. However,
other studies showed that the differences in extreme values can be relatively large when using different
air temperature estimates [16]. In addition, small differences can also lead to relatively large deviations
when daily air temperature data are used for specific applications such as the calculation of the winter
wheat development rate [12]. Therefore, it is not clear how different mean daily air temperature
estimates based on different equations affect the results of the rainfall-runoff modelling with the
conceptual hydrological model. Although it could be concluded from the results of the previous
studies [19] that the impact will not be significant, it is worth doing this modelling exercise since the
differences in the air temperature estimates at a daily time step can be relatively significant [13,18] and
this could affect some of the important modelled processes such as snow melting or snow accumulation
that depend on air temperature threshold values. Moreover, it is also interesting to compare this impact
with other sources of uncertainty related to the rainfall-runoff modelling such as measurement errors.

Therefore, the main objective of this study was to evaluate the influence of the mean daily air
temperature values calculated using different equations on the results of the rainfall-runoff modelling.
More specifically, the next research questions were investigated: (i) whether there are any tested
methods (equations) for the mean air temperature calculation, which outperforms others and it is
possible to identify a geographical pattern, (ii) what influence the mean daily air temperature has on
the results of the rainfall-runoff modelling using a conceptual model with and without snow module,
and (iii) whether the influence of temperature is greater than the influence of the measurement errors.

2. Data and Methods

2.1. Data and Study Area

As an input data, hourly air temperature measurements conducted at 2 m height using the Vaisala
QMT103 temperature probe were used [21]. Period from 1 January, 2010 until 31 May, 2020 was applied
in the study. Measurements were conducted at 33 locations in Slovenia performed in the scope of
the Slovenian Environment Agency monitoring (Figure 1). For 20 stations, the complete data period
was available, and, for the other 13 stations, 5 to 7 years of data were available. Stations elevation
ranged from 2 m a.s.l. (i.e., Portorož station) to 2513 m a.s.l. (i.e., Kredarica station). Additional
information about the climate types in Slovenia can be found in Dolšak et al. [22]. Based on the hourly
air temperature measurements, the mean daily air temperature data was calculated using the next four
equations [13].

T0 =
24∑

i=1

Ti/24 (1)

T1 = (T7 + T14 + 2× T21)/4 (2)

T2 = (TMAX + TMIN)/2 (3)

T3 = (T7 + T13 + 2× T19)/4 (4)

where Ti, TMAX, and TMIN are hourly air temperature values, and maximum and minimum daily
air temperature values, respectively. Moreover, T7, T13, T14, T19, and T21 are hourly air temperature
values measured at 7:00, 13:00, 14:00, 19:00, and 21:00, respectively. According to Conner and Foster
(2008), the T0 (Equation (1)) was selected as the “true” mean daily air temperature in this study and
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deviations between the Equations (1) and (2), Equations (1)–(3), and Equations (1)–(4) were evaluated.
Mean Absolute Error (MAE) was applied for this purpose. It should be noted that many other equations
for the estimation of the mean daily air temperature can also be found in the literature [12]. Additional
information about the origin of different equations and regions, where these are mostly used can be
found in the existing literature [12,13,16,18,23,24]. It should be noted that Equation (2) is the one that
is the most frequently used in Slovenia for calculating the mean daily air temperature. In this case,
manual readings at 7:00, 14:00, and 21:00 are used as an input and not continuous hourly measurements.
Some historical background of various equations that can be used to calculate the mean daily air
temperature is provided by Conner and Foster [23]. Most of the equations used today originated more
than 100 years ago and are based on the assumptions and knowledge of that time [23].
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selected (Figure 1 and Table 1). These were selected on the basis of the availability of discharge and 
precipitation data and with the aim of selecting catchments with one meteorological station, which is 
relatively representative for the whole catchment, so as not to introduce additional uncertainty due 
to spatial interpolation. It should be noted that using only one station per catchment may not be 
appropriate for the description of the spatial rainfall patterns. However, since the aim of the study 
was not to set up the best possible model but to evaluate the impact of the daily air temperature on 
the modelling results, it can be argued that such an assumption can be considered acceptable. 
However, spatial interpolation of rainfall may introduce additional uncertainty that could affect the 
modelling results. Additionally, catchments in different climate zones were selected. For example, 
the two nested catchments of Sava Dolinka are located in the Alpine climate, while the catchments of 
Ledava and Nanoščica are located in a temperate continental climate [22]. 
  

Figure 1. Location of the considered meteorological and climatological stations (white dots) and
location of four selected catchments (red areas, green dots show water level gauging stations) with a
river network in Slovenia (blue lines).

In order to evaluate the impact of the equation used for the mean daily air temperature calculations
on the rainfall-runoff modelling results, four meso-scale catchments in Slovenia were selected (Figure 1
and Table 1). These were selected on the basis of the availability of discharge and precipitation data and
with the aim of selecting catchments with one meteorological station, which is relatively representative
for the whole catchment, so as not to introduce additional uncertainty due to spatial interpolation.
It should be noted that using only one station per catchment may not be appropriate for the description
of the spatial rainfall patterns. However, since the aim of the study was not to set up the best possible
model but to evaluate the impact of the daily air temperature on the modelling results, it can be argued
that such an assumption can be considered acceptable. However, spatial interpolation of rainfall may
introduce additional uncertainty that could affect the modelling results. Additionally, catchments in
different climate zones were selected. For example, the two nested catchments of Sava Dolinka are
located in the Alpine climate, while the catchments of Ledava and Nanoščica are located in a temperate
continental climate [22].
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Table 1. Main characteristics of catchments used in this study for hydrological modelling.
Mean discharge in the period of 2010–2018 as well as mean annual precipitation, number of snow days,
and mean min., mean, and mean max. air temperature for the 2010–2019 period are presented.

River Sava Dolinka Sava Dolinka Ledava Nanoščica

Discharge gauging station Kranjska Gora Blejski most Polana Mali Otok
Catchment area (km2) 40 509 209 51
Mean discharge (m3/s) 1.6 25.3 1.2 1.6
Precipitation and air
temperature station Rateče Rateče Murska Sobota Postojna

Station elevation 864 m a.s.l. 864 m a.s.l. 187 m a.s.l. 533 m a.s.l.
Mean annual precipitation (mm) 1655 1655 841 1532

Number of days with
snow cover 105 105 30 35

Mean min., mean and max.
air temperature (◦C) 2.5, 7.5, 13.7 2.5, 7.5, 13.7 6.3, 11.2, 16.8 5.5, 10.4, 15.7

2.2. Hydrological Modelling

For the hydrological rainfall-runoff modelling, the Génie Rural à 4 paramètres Journalier (GR4J) and
the enhanced model versions GR6J and CemaNeige GR6J were selected [25–28]. Detailed description
of the models is provided in the existing literature [4,9,25–27]. The required input data used by the
GR4J and GR6J models are precipitation and potential evapotranspiration, while discharge data is
needed for model calibration and performance evaluation [25,27,28]. Moreover, the CemaNeige GR6J
model also requires air temperature data and a catchment hypsometric curve in order to account
for the snow accumulation and melting [4,9]. In this study, the potential evapotranspiration was
calculated using the equation proposed by Oudin et al. [8] based on the daily air temperature data
and station location. In case of the GR4J and GR6J models, the impact of the daily air temperature
equation was evaluated through the potential evapotranspiration calculation, while, in case of the
CemaNeige GR6J model, the daily air temperature data was used directly in the snow module as well
as for the potential evapotranspiration calculations. The period of 2010–2013 was used for calibration
of all applied rainfall-runoff models (i.e., GR4J, GR6J, and CemaNeige GR6J) with a one-year warm-up
period (i.e., year 2010) and 2014–2018 was used for the models’ performance evaluation. A method
proposed by Michel (1991) was applied for rainfall-runoff model calibration [26,28,29]. The Root
Mean Square Error (RMSE) criteria was used in the process of model calibration [26,28]. For all
four selected catchments, the impact of different equations (Equations (1)–(4)) for the mean daily air
temperature calculation was evaluated for the GR4J, GR6J, and CemaNeige GR6J models using the
previously described approach. Additionally, for the Blejski otok station on the Sava Dolinka river,
we also evaluated the impact of other parameters on the model results, namely the impact of the
model performance criteria for the model calibration, where Nash-Sutcliffe (NSE), Kling-Gupta (KGE),
and updated Kling-Gupta (KGE2) criteria were used [30–32]. The impact of the warm-up period length,
where half a year and a two years’ warm-up was applied during the calibration period. Additionally,
the impact on the measurements and rating curve uncertainty was analysed.

2.3. Measurement Error of the Model Input Data

Measurement error impact on the rainfall-runoff modelling was evaluated and compared to the
impact of the selected equation for the calculation of the mean daily air temperature. All the calculations
were performed for the Blejski otok station on the Sava Dolinka river, while the Rateče station was
used as a reference meteorological station for this catchment. Air temperature measurements were
conducted using the Vaisala QMT103 sensor, where the performance of this sensor in terms of accuracy
conforms to the 1

4 DIN 43760B standard [21]. This means that the air temperature T measurement
error is ∓

(
0.3
4 + 0.005× |T|/4

)
, which is approximately ∓0.1 ◦C in the case that air temperature ranges

between −20 ◦C to +30 ◦C. Additionally, rainfall measurements were conducted using Pluvio 250
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(i.e., Pluvio 1) sensor manufactured by OTT. Reported manufacturer error is ∓2% [33]. In the extensive
comparison of rain gauges, Wauben [34] indicated that OTT Pluvio 250 error is generally close to the
reported values by the manufacturer (sometimes a bit larger), but the total precipitation is within
the ∓0.5%. Thus, this value was also considered in further investigations in the scope of this paper.
Furthermore, water level measurements at the Blejski station are conducted using VEGAPULS 67 radar,
whose reported accuracy is ∓2 mm [35]. Additionally, water level measurements are also conducted
using the OTT pressure level sensor PLS, whose reported accuracy is ∓0.05 % [36]. Since measurements
from both sensors are combined to determine the discharge values, the ∓0.1% accuracy was used for
further investigations. All measurements were performed in the scope of the Slovenian Environment
Agency monitoring.

Additionally, discharge and water level measurements used to construct the rating curve were also
obtained from the Slovenian Environment Agency. The standard error of the estimate was calculated
using the next equation [37].

Se(Q) = t×

√√√√√√
∑[Qi−Qc

Qc
× 100

]2

N− 2

 (5)

where Qi is the discharge measurement, Qc is the corresponding discharge taken from the rating curve,
N is the number of discharge measurements, and t is Student’s t correction at the 95% confidence level,
which is around 2 for 20 or more measurements [37].

The impact of the measurement error on the rainfall-runoff modelling results was accounted
using normal distribution, which can be used to estimate random uncertainty [37]. This means that a
randomly generated error, which is within the range of the reported sensor accuracy was added to the
measurement. The procedure was repeated 100 times and the hydrological model was consequently
run 100 times using different input data changed according to randomly generated errors. For example,
in the case of precipitation time series, a randomly generated value within the range of ∓0.5% was
added to every measurement. Four different cases were investigated: (i) only an air temperature (T)
error was considered, (ii) both air temperature and a precipitation (P) error were considered, (iii) air
temperature, precipitation, and the discharge (Q) error were considered and (iv) air temperature,
precipitation, discharge, and the rating curve (RC) error were considered.

3. Results and Discussion

3.1. Mean Daily Air Temperature Calculation Using Multiple Equations

In the first step of the study, the differences in the mean daily air temperature values derived
using different equations were calculated (Figure 2). One can notice that Equations (2) and (3) yielded
relatively similar MAE values (Figure 2). More specifically, for Equation (2), the MAE values ranged
from 0.46 to 0.78 ◦C with a mean value of 0.56 ◦C. Moreover, for Equation (3), the MAE values ranged
from 0.36 to 0.78 ◦C with a mean value of 0.58 ◦C. On the other hand, Equation (4) yielded larger MAE
values that ranged from 0.29 to 1.19 ◦C with a mean value of 0.80 ◦C. Similarly, Bonacci et al. [13] found
that Equation (2) and (3) yielded better performance than Equation (4) for the Zagreb meteorological
station in Croatia. However, different results were obtained for the other two analysed stations in
Croatia. Additionally, Weiss and Hays [12] emphasized that there was relatively good agreement
between tested methods and Equation (1) based on the Root Mean Square Error (RMSE) values. Similar
results were obtained in this study based on the MAE criterion. Furthermore, it can also be seen that,
on average, all three applied equations overestimated the daily air temperature values derived using
Equation (1). This overestimation was the largest in the case of Equation (4) (i.e., mean 0.63 ◦C), followed
by Equation (3) (i.e., mean 0.22 ◦C) and Equation (2) (i.e., mean 0.02 ◦C). Similarly, Villarini et al. [16]
pointed out that the equation, based on the average of minimum and maximum daily temperature
overestimates, the daily values for up to 10% when focusing on extreme values. Additionally, the results
of the study also demonstrate that there is no clear geographical pattern in the outperformance of
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a specific equation in Slovenia (Figure 2). Furthermore, it should be noted that these results are
more important for the historical periods when the hourly data were not available and daily air
temperature was calculated using one of the equations Equations (2)–(4) (e.g., Equation (2) in Slovenia).
Thus, using hourly measurements enables one to investigate possible errors before the period of
hourly measurements.

Water 2020, 12, x FOR PEER REVIEW 6 of 14 

 

meteorological station in Croatia. However, different results were obtained for the other two 
analysed stations in Croatia. Additionally, Weiss and Hays [12] emphasized that there was relatively 
good agreement between tested methods and Equation (1) based on the Root Mean Square Error 
(RMSE) values. Similar results were obtained in this study based on the MAE criterion. Furthermore, 
it can also be seen that, on average, all three applied equations overestimated the daily air 
temperature values derived using Equation (1). This overestimation was the largest in the case of 
Equation (4) (i.e., mean 0.63 °C), followed by Equation (3) (i.e., mean 0.22 °C) and Equation (2) (i.e., 
mean 0.02 °C). Similarly, Villarini et al. [16] pointed out that the equation, based on the average of 
minimum and maximum daily temperature overestimates, the daily values for up to 10% when 
focusing on extreme values. Additionally, the results of the study also demonstrate that there is no 
clear geographical pattern in the outperformance of a specific equation in Slovenia (Figure 2). 
Furthermore, it should be noted that these results are more important for the historical periods when 
the hourly data were not available and daily air temperature was calculated using one of the 
equations Equations (2)–(4) (e.g., Equation (2) in Slovenia). Thus, using hourly measurements enables 
one to investigate possible errors before the period of hourly measurements. 

 
Figure 2. Mean Absolute Error (MAE) values between Equations (1) and (2) (blue bar), Equations (1)–
(3) (green bar), and Equations (1)–(4) (red bar) using mean daily air temperature data. 

3.2. Impact of the Mean Daily Air Temperature on the Rainfall-Runoff Modelling Results 

In the next step of the study, we investigated how differences in daily air temperature values 
(Section 3.1) affect the results of the rainfall-runoff modelling. The modelling was carried out for four 
selected catchments using three model versions (i.e., GR4J, GR6J, and CemaNeige GR6J). The first 
step was the model calibration, and Figure 3 shows an example of the calibration and validation 
performance for the Polana station on the Ledava river using the CemaNeige GR6J model. A similar 
model performance was achieved for the other three catchments. Furthermore, simulation of the 
snow accumulation and melting can be regarded as acceptable based on climatic characteristics while 
taking into consideration the fact that no measured information about this variable was available. It 
should be noted that the main objective was not to achieve optimal model performance, but to 
evaluate the impact of the mean daily air temperature on the rainfall-runoff results using a model 
with acceptable performance. We are aware of the fact that the performance of the models could be 
improved by including additional stations with precipitation and air temperature data and a better 
description of the spatial precipitation and air temperature patterns. The performance of the tested 
models using different equations for mean daily air temperature estimates are shown in Table 2. The 
performance of models for individual catchment is almost exactly the same no matter which equation 
was used for the mean daily air temperature estimates. The same is true for the range of simulated 
discharge data (Figure 4). In most cases, there are greater differences between the models (e.g., GR4J 
and CemaNeige GR6J) than between different input mean daily air temperature values based on 

Figure 2. Mean Absolute Error (MAE) values between Equations (1) and (2) (blue bar), Equations
(1)–(3) (green bar), and Equations (1)–(4) (red bar) using mean daily air temperature data.

3.2. Impact of the Mean Daily Air Temperature on the Rainfall-RunoffModelling Results

In the next step of the study, we investigated how differences in daily air temperature values
(Section 3.1) affect the results of the rainfall-runoff modelling. The modelling was carried out for four
selected catchments using three model versions (i.e., GR4J, GR6J, and CemaNeige GR6J). The first
step was the model calibration, and Figure 3 shows an example of the calibration and validation
performance for the Polana station on the Ledava river using the CemaNeige GR6J model. A similar
model performance was achieved for the other three catchments. Furthermore, simulation of the snow
accumulation and melting can be regarded as acceptable based on climatic characteristics while taking
into consideration the fact that no measured information about this variable was available. It should
be noted that the main objective was not to achieve optimal model performance, but to evaluate the
impact of the mean daily air temperature on the rainfall-runoff results using a model with acceptable
performance. We are aware of the fact that the performance of the models could be improved by
including additional stations with precipitation and air temperature data and a better description of
the spatial precipitation and air temperature patterns. The performance of the tested models using
different equations for mean daily air temperature estimates are shown in Table 2. The performance of
models for individual catchment is almost exactly the same no matter which equation was used for
the mean daily air temperature estimates. The same is true for the range of simulated discharge data
(Figure 4). In most cases, there are greater differences between the models (e.g., GR4J and CemaNeige
GR6J) than between different input mean daily air temperature values based on considered equations
(Table 2 and Figure 4). This is especially the case for the GR4J and GR6J models where air temperature
is used to calculate the potential evapotranspiration (Figure 4). It should be noted that, for the other
three investigated catchments, the differences between the GR4J and GR6J model results using different
input data (i.e., Equations (1)–(4)) were even smaller than in the case of the Kranjska Gora station,
presented in Figure 4. More specifically, the differences in the mean discharge values were, in the
majority of the cases, less than 1%. In two cases, the differences were up to 2%. Furthermore, the largest
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differences in the simulated mean discharge values were observed for the CemaNeige GR6J model for
the Kranjska Gora station on the Sava Dolinka river in case of using Equations (1) and (4) for mean air
temperature estimates (Figures 4 and 5). In this case, the difference in the mean discharge was around
3% (i.e., 1.58 m3/s and 1.53 m3/s for the Equation (4) and (1), respectively). Furthermore, somewhat
larger differences were obtained for maximum simulated values in case results using Equation (1) are
compared with the rainfall-runoff models results using Equations (2)–(4). More specifically, in some
cases, the differences were within the range of 5% but mostly in the range of 1–2%. The differences in
the mean daily air temperature values using Equations (1)–(4) were within the range of 5% (i.e., for the
2014–2018 period) (Figure 6). Moreover, the differences in the maximum daily air temperature
values derived using different equations (i.e., Equation (1)–Equation (4)) for stations that are used
for the rainfall-runoff modelling (i.e., Rateče, Postojna, Murska Sobota) were within the range of 8%
(Figure 6). Therefore, it is clear that rainfall-runoff process minimizes the differences in the mean daily
air temperature data since precipitation is the main input variable (i.e., compare the scatter shown
in Figures 5 and 6). Thus, these differences in the rainfall-runoff model results can be regarded as
relatively small, especially if one considers uncertainty of rainfall-runoff modelling results related
to the parameters’ estimation or model structural uncertainty [38,39]. Additionally, the next section
discusses the impact of other factors on the rainfall-runoff modelling results.
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Figure 3. Evaluation of the CemaNeige GR6J model for the calibration (left) and validation (right)
period. Top two panels show input precipitation and air temperature data. Middle panel shows
modelled snow pack values. Lower two panels show a comparison between simulated and observed
discharge data using daily discharge values, 30-days rolling mean, flow duration curve, and scatter plot.
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Table 2. Root Mean Square Error (RMSE) criteria values for discharge results (mm) in case of four investigated catchments for the calibration and validation periods
using different input values for the mean air temperature estimates.

Station Period
GR4J GR6J CemaNeige GR6J

Equation (1) Equation (2) Equation (3) Equation (4) Equation (1) Equation (2) Equation (3) Equation (4) Equation (1) Equation (2) Equation (3) Equation (4)

Kranjska Gora Calibration 1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.77 1.52 1.52 1.48 1.49
Validation 1.67 1.66 1.64 1.67 1.66 1.64 1.66 1.67 1.08 1.08 1.14 1.18

Polana
Calibration 0.69 0.69 0.69 0.68 0.64 0.64 0.64 0.64 0.46 0.46 0.48 0.48
Validation 1.09 1.09 1.09 1.07 1.35 1.32 1.34 1.29 1.26 1.22 1.24 1.20

Mali otok
Calibration 2.52 2.52 2.52 2.52 2.51 2.51 2.50 2.50 2.35 2.41 2.32 2.39
Validation 2.55 2.55 2.55 2.56 2.54 2.54 2.55 2.55 2.58 2.58 2.60 2.59

Blejski most Calibration 2.08 2.08 2.08 2.08 2.00 2.00 2.00 2.00 1.76 1.80 1.71 1.77
Validation 2.60 2.60 2.60 2.60 2.46 2.45 2.46 2.49 1.76 1.80 1.73 1.76
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Figure 6. Comparison of mean daily air temperature values for the Rateče station on the Sava Dolinka
river using different input values for the mean air temperature estimates. In all three cases, the x-axis
shows the mean daily air temperature estimates using Equation (1) while the y-axis show values
obtained using Equation (2), Equation (3), and Equation (4) (from left to right).
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3.3. Impact of the Measurements Error on the Rainfall-RunoffModelling Results

All the calculations that were carried out in the scope of this part of the study were performed
for the Blejski station on the Sava Dolinka river. The first step was the evaluation of the impact of
the performance criteria used for the model calibration. KGE, KGE2, and NSE were applied and
compared to the results obtained using RMSE (i.e., using Equation (1) for the mean daily air temperature
determination in all cases). The differences in the mean simulated discharge values were in the range
of 2%, while the differences in the maximum discharge values were much larger and within the range
of 30% (Figure 7). These differences in the maximum discharge values also yielded differences in
the overall model performance. In a similar manner, the impact of the length of the model warm-up
period on the results was also evaluated (Figure 7). In this case, the differences in the mean simulated
discharge values were in the range of 6% and were larger for the CemaNeige GR6J model than for the
GR4J and GR6J models. Additionally, differences in the maximum simulated discharge values were in
the range of 20%, which also impacted the model performance. The results show that performance
criteria used in the process of model calibration and the length of the warm-up period had a larger effect
on the model results than selection of the equation used for calculating the mean daily air temperature
(Section 3.2). Similar results would be expected in the case of shortening or extending the length of the
calibration period [40]. However, some studies have indicated that shorter periods could be sufficient
for efficient model calibration [41,42]. Moreover, use of a different calibration method would likely
also have a relatively significant impact on the rainfall-runoff modelling results [43,44].
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Figure 7. Impact of the efficiency criteria used for the CemaNeige GR6J model calibration (left figure)
and impact on the length of the model warm-up period (right figure) on the model results in the
validation period for the Blejski most station on the Sava Dolinka river. In both cases, the x-axis shows
discharge values obtained using Equation (1), RMSE as a criterion for the calibration, and one year as a
warm-up period. In the left figure, the y-axis shows the results using the KGE2 for model calibration.
In the right figure, the y-axis shows the results using half-year data for the model warm-up period
instead of one year.

In the next step, we evaluated the impact of the measurements error and rating curve error
(uncertainty) on the modelling results. The estimated errors and the methodology are presented in
the Data and Methods section. Using described methodology, the uncertainty in the rating curve
(water level-discharge relation) was also estimated. The periodical discharge measurements and
currently valid rating curve for the Blejski station on the Sava Dolinka river are shown in Figure 8.
Using the methodology described in Data and Methods, it was estimated that the standard error
is ∓35%. This information was used for the estimation of measurements error and rating curve
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uncertainty on the rainfall-runoff modelling results. Based on 100 model runs, differences in model
results were evaluated for the GR4J and CemaNeige GR6J models (Table 3). The results show that
consideration of only air temperature (T) measurement uncertainty had almost no impact on the
model results. Additionally, consideration of precipitation and water level measurements uncertainty
yielded slightly larger deviations among 100 model runs (Table 3). However, the differences were
up to 1% for the maximum simulated discharge values and smaller for the mean discharge values
(Table 3). Furthermore, additional consideration of the rating curve uncertainty yielded differences in
the simulated mean discharge values in the range of 3%, while differences in the maximum discharge
values were up to 14% (Table 3). It can be concluded that precipitation measurement uncertainty yields
only slightly smaller variability in the results of the multiple model runs than consideration of different
mean daily air temperature values calculated using Equations (1)–(4). Furthermore, the variability
in the model results due to the rating curve uncertainty is larger than in the case that mean daily air
temperature data is calculated with Equation (4) instead of Equation (1).
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Table 3. Overview of the measurements and rating curve errors on the rainfall-runoff modelling
results using GR4J and CemaNeige GR6J models. The difference between the minimum and maximum
simulated discharge values of the 100 model runs, calculated for all mean and maximum simulated
discharge values, is shown.

Model Statistics T T, P T, P, Q T, P, Q, RC

GR4J Mean ~0% <1% <1% 3%
Maximum ~0% 1% 1% 14%

CemaNeige GR6J Mean ~0% <1% <1% 2%
Maximum ~0% 1% 1% 13%

4. Conclusions

Equation (3) as well as Equation (2), which is also very frequently used in Slovenia for the
calculation of the mean daily air temperature, both yield similar MAE values in case Equation (1)
results, which are used as a “true” mean daily air temperature estimates. The mean MAE values were
around 0.55 ◦C. Moreover, MAE values using Equation (4) are larger for most of the analysed stations
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(i.e., mean MAE was around 0.80 ◦C). Furthermore, no geographical pattern could be observed based
on the presented results.

For the investigated catchment differences in the mean daily air temperature values due to use of
different equations were almost negligible in relation to the rainfall-runoff modelling results. In most
cases, the differences in the mean simulated discharge values were not larger than 1%. Although
differences in the maximum discharge values were a bit larger, these did not exceed 5% and were
mostly in the range of 1–2%.

Evaluation of different variable measurements and rating curve uncertainty indicated that air
temperature measurement did not have any significant impact on the results. A somewhat larger
impact was observed when precipitation and water level measurement uncertainty was included.
However, rating curve uncertainty can be regarded as the most influential among all analysed input
data uncertainties. This uncertainty had a much larger effect on the rainfall-runoff modelling results
than for the use of Equation (4) instead of Equation (1) for mean daily air temperature definition.
Furthermore, the investigation also revealed that selection of the performance criteria used in the
process of model calibration is as important as consideration of measurements and rating curve
uncertainty. The impact of the selection of the performance criteria is much larger than the impact of
the mean daily air temperature equation selection. Similar conclusions can also be made for the length
of the model calibration warm-up period.
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