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Abstract: Various models were developed in the past to simulate different hydrological processes.
However, discrepancies between simulated and observed values are still significant and pose a
challenge to many researchers. Models contain many parameters that cannot be directly measured.
The values of most of these parameters are determined in the calibration process conditioning the
efficiency of such models. This paper introduces the use of the enhanced Gauss–Levenberg–Marquardt
(GLM) procedure in combination with the singular value decomposition (SVD) and Tikhonov
regularization to improve the process of hydrological model calibration. The procedure is tested on a
freely available hydrological model using a synthetic dataset. Based on several efficiency measures,
the GLM procedure, in combination with SVD and Tikhonov regularization, was found to provide
efficient model history matching and almost perfect parameter calibration. Moreover, by comparing
the results of the proposed procedure with the results of global evolutionary calibration procedures, it
was found that the only calibration using the combined GLM procedure gave a perfect fit in low flows.
Last but not least, the noise in the calculation results with the combined GLM method was practically
the same in either the calibration or validation procedure, suggesting that only computational noise
remained in the results.

Keywords: calibration model efficiency; Parameter Estimation Tool (PEST); HBV-light;
Gauss–Levenberg–Marquardt procedure; SVD; Tikhonov regularization; parallel computing

1. Introduction

Simulation of hydrological processes using computer models has a long and rich history [1,2].
Hydrological models are merely a mathematical approximation of a variety of dynamic processes
in highly heterogeneous conditions in nature. A model’s variables are spatially heterogeneously
distributed, while we have limited datasets available. The same is true for data on how water moves
over and below the surface [3–6]. Different hydrological processes dominate different river catchments
due to natural conditions. Therefore, various models were developed to simulate these hydrological
processes more or less successfully [1,2,7,8]. More than 60 different hydrological models are available
for rainfall–runoff simulations [1]. Due to noise, the discrepancies between simulation results and
measurements are still significant and challenging for many researchers [6,9–16]. One of the reasons
for the discrepancy between measurements and results of simulations can also be attributed to a lack
of knowledge [17].

Discrepancies between observed data and simulated values, i.e., noise, can be produced by many
sources. First, the data we use in the model alone is a source of the so-called primary noise resulting
from measurements and observations [6,10,18–25]. Second, the source of noise is the structure of the
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model itself, i.e., structural noise. The structural noise of modeling is the fact that the model is not a
duplicate of the real state of nature. The structural noise of the modeling can be further divided into
conceptual noise [26], model design noise, and model calibration noise. Conceptual noise is caused by
a set of selected equations of complex hydrological processes that simulate natural phenomena [25,27].
For example, when highly nonlinear phenomena are modeled using linear equations, or due to the
lack of data, certain parts of the hydrological cycle can be easily extracted from the model producing
structural noise [25,26]. The design noise of the model is conditioned by the spatial and temporal
discretization of the model when preparing the input data, i.e., with the same concept, the same river
catchment can be designed differently. A model’s calibration noise is conditioned by the choice of the
calibration method by which the model parameters are calibrated.

In practice, hydrological modeling involves various models, stochastic or deterministic and
conceptual or empirical. Hydrological models contain many parameters that are integral to the model’s
equations and cannot be determined directly by field measurements. At best, only the limits, within
which the parameters take value according to their physical meaning or practical experience, can be
defined. The parameters are determined in the calibration procedure when the calculated results are
compared with the measurements [28–30]. The question of model calibration is as old as modeling
itself, and several different calibration methods have evolved.

The oldest procedure for model calibration is the trial-and-error method, where the modeler
manually changes the parameter values and visually analyzes the results. This approach was also used
in the original design of the HBV (Hydrologiska Byråns Vattenavdelning) hydrological model [31,32].
The process is entirely subjective and conditioned by the knowledge and experience of the modeler
and is mainly time-consuming. However, the modeler gets a direct sense of the sensitivity of the model
and the importance of the individual parameters.

Over time, many computer-based methods for model calibration have evolved which can otherwise
be used for a variety of purposes and in different scientific areas: the Monte Carlo method [33,34],
the general probability of estimation uncertainty [35], the artificial neural network [36], the genetic
algorithm (GAP) [18], the hybrid harmony search algorithm [37], the covariance matrix adaptation
evolution strategy (CMA–ES) global optimization scheme [38–40], and the generalized reduced
gradient [41]. Different theoretical bases give different calibration processes, where we generally
distinguish between Newton-type methods, based on the first and second derivatives of the objective
function, and global evolved methods, based on a stochastic approach [42]. As a disadvantage of
Newton-type procedures, the literature reports about the phenomenon that the process is lost at the
local minimum and is unable to find a possibly better global solution [42].

The calibration of complex nonlinear conceptual models has been the subject of intense studies
for decades [17]. Recently, the popularity of the process of finding the inverse solution of the
equations of a deterministic conceptual model, using a combination of Gauss–Levenberg–Marquardt
(GLM) transformation, singular value decomposition (SVD), and Tikhonov regularization, is
increasing [26,43–45]. The GLM method has been successfully used in the calibration of groundwater
models [46–48], models of biophysical processes in agricultural systems [49], the optimal power
flow (OPF) models to determine the best operating levels for electric power plants [50], petroleum
and geothermal reservoir models [51], the estimation of soil loss model [52], and other complex
environmental models [53]. However, to the authors’ knowledge, the successful application of the
GLM method in combination with SVD and Tikhonov regularization in the calibration of a conceptual
hydrological model has not been reported yet by other researchers. Therefore, this paper aims to
demonstrate that the combination of processes mentioned can provide similar or even better calibration
results compared to other established approaches for hydrological model calibration.

The main objectives of this paper are to (1) present and apply the multicriteria GLM procedure
in combination with singular value decomposition and Tikhonov regularization to calibrate the
hydrological model, (2) use the existing freely available hydrological model with synthetic runoff

data [18,54,55], which is required to determine the appropriate parameter settings of calibration to
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reduce calibration noise and to improve the calibration efficiency, (3) compare the performance of
the GLM procedure in combination with SVD and Tikhonov regularization with global evolutionary
calibration procedures, and (4) accelerate the calibration process using parallel computing. Moreover,
the reader can find a detailed description of the proposed procedure in Supplementary Materials.

2. Materials and Methods

In the section below, we present the Gauss–Levenberg–Marquardt procedure, singular value
decomposition, and Tikhonov regularization, which is used in the inverse solutions of the equations
of a deterministic conceptual model. In addition, the hydrological model and data are described.
A methodology for model calibration and validation is presented. All procedures, as mentioned
earlier, i.e., GLM, SVD, and Tikhonov regularization, are included in the PEST software [53]. Therefore,
for this study, we used the PEST software tool, which is an industry-standard software package
designed to evaluate parameters and analyze the uncertainties of complex environmental and
other computer models [53]. Specifically, we used the PEST_HP calibration tool (HP means very
parallelized), which is equal to PEST [56,57] but PEST_HP uses parallel computation, resulting in faster
calculation performance.

2.1. Gauss–Levenberg–Marquardt Method

The Gauss–Levenberg–Marquardt method (GLM) is a blend of gradient descent and
Gauss–Newton methods. In the literature, it is also referred to as the “Levenberg–Marquardt”
algorithm (LMA or just LM), or the “damped least-squares” method (DLS) [58]. The parameter
estimation is based on Equation (1). When the target function is far from being the smallest, the
GLM operates by the steepest gradient method, but around the minimum, the GLM begins to act as a
Gauss–Newton method. The Marquardt lambda in Equation (1) is a blending factor, which determines
the mix between the gradient descent and the Gauss–Newton methods. λ is the so-called “Marquardt
parameter,” or synthetic “Marquardt lambda,” named after Marquardt [58], who introduced this
methodology. However, the use of this parameter was pioneered by Levenberg [59]. If the error is
increasing, the function is far from its minimum and lambda should be increased approaching the
gradient descent method. On the other hand, if the error is decreasing, the approximation is working
well, so lambda is decreased. The parameter upgrade vector (u) is calculated according to the following
equation [58,60]:

u = (JT
·W·J + λ·I)

−1
·JT
·W·r (1)

where

J—a Jacobean matrix, each element is a derivative of one particular observation for each parameter;
W—a square diagonal matrix with squared weights attached to each observation;
λ—Marquardt lambda or damping factor, which is adjusted during each iteration;
r—vector of residuals which is minimized during calibration;
I—an identity matrix; and
T—the matrix transpose operator.

As it is apparent from Equation (1), the GLM algorithm requires the computation of the Jacobian
matrix and matrix inversion at each iteration step as many times as there are adjustable parameters.
Matrix inversion is a significant disadvantage. When the matrix is singular, GLM still performs due
to the Marquardt lambda. A matrix often becomes singular when columns (or rows) are linearly
dependent [61]. An enhanced version of GLM is implemented in PEST_HP to improve computing
performance. Each lambda defines a direction in parameter space; lambdas are selected using an
enhanced version of the algorithm employed by the traditional PEST [62].

The GLM algorithm is a standard method for solving nonlinear least-squares problems. The method
needs to adjust the parameterized functions to the set of measured data by reducing the sum of the
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squares of the differences between the measured and computational values [44,60,63]. The result of this
procedure is not only an optimal set of parameters but also a detailed analysis of the sensitivity of the
parameters [11], which tells us what the impact and importance of each parameter are on the modeling
itself [64]. Thus, several sets of parameter values that meet the criteria of the objective function with
the same degree of adaptation can be obtained [30].

2.2. Singular Value Decomposition

When solving systems of linear equations, in practice, we may encounter very sensitive systems.
The singular value decomposition (SVD) is a tool that helps us understand why a particular linear
equation system is very sensitive. SVD is a very powerful tool in numerical linear algebra. With the
help of SVD, we can get practical solutions to some very sensitive systems [45]. When a large number
of parameters are added to a model, some parameters can be expected to be insensitive and others to be
highly correlated with other parameters. As a result, even though a parameter may be estimable, it does
not mean that it is estimable. What is needed is an intelligent calibration tool; one that detects what
can and cannot be inferred from the calibration dataset. Then we can estimate what can be estimated
and leave out what cannot be estimated. This is done automatically, without users’ intervention.
More about the theory of singular value decomposition (SVD) and the tool is described [56,65].

2.3. Tikhonov Regularization

The process by which a useful solution is obtained for a very sensitive system is called
regularization [45]. Tikhonov regularization was first presented by Tikhonov and Arsenin as a
solution finding procedure for ill-posed problems, which is often the case in models with a large
number of parameters [43,66]. Using more parameters than can be constrained uniquely by observations
results in the formulation of an ill-posed inverse problem. The numerical solution of that problem
must include the use of one or more regularization mechanisms to stabilize the numerical solution
process and identify a unique solution. This topic is covered in-depth in articles [67,68]. Boundary
conditions constrain the inverse process calculations, and the experience of the modeler is required for
their determination.

2.4. CMA–ES

The covariance matrix adaptation evolution strategy (CMA–ES) is a global optimization scheme.
The CMA–ES is a stochastic or randomized method for the parameter calibration of nonlinear,
nonconvex functions. CMA–ES is a powerful and robust global optimization method [38–40]. CMA–ES
does not require derivatives of model outputs to adjustable parameters for the implementation of its
optimization algorithm. Thus, it can be employed where model outputs show “numerical granularity”
due to model numerical solution instability, or where the model is highly nonlinear and/or the objective
function surface shows local minima at various scales [69].

2.5. GAP

Genetic algorithm and Powell (GAP) optimization is another approach for model calibration.
The GAP is a stochastic design method and works evolutionarily by selecting and recombining
high-performing parameter sets with each other. The GAP algorithm consists of two steps [18,54]. First,
optimized parameter sets are generated by an evolutionary mechanism of selection and recombination
of a set of initial, randomly selected parameter sets (again within user-defined parameter boundaries).
During the second step, parameter sets are fine-tuned using Powell’s quadratically convergent method,
as described in [70].
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2.6. Hydrological Model and Data

The hydrological model HBV in the version of HBV-light software [71] was selected for the
study because of the possibility of its direct connection with external calibration programs. The HBV
model is a widely used conceptual precipitation–runoff model that simulates catchment runoff

based on precipitation, temperature, and long-term potential evaporation at a daily time step [72].
The HBV model was developed in the early 1970s to assist hydropower operations by the Hydrology
Department of the Swedish Meteorological and Hydrological Institute [31]. The model is partially
distributed since it allows the river catchment to be divided into smaller subcatchment units.
Each subcatchment can be further subdivided into smaller areas based on land use and altitude.
The model includes computational procedures that describe hydrological processes: snow accumulation
and melting, evapotranspiration assessment and soil moisture calculation, subsoil runoff, and water
flow transformation in a riverbed [73].

A version of the HBV-light model developed at Uppsala University was used and further refined
at various universities around the world. The latest version of HBV-light was coded in the VB6
programming language in VB.NET [54]. In principle, the HBV-light routines correspond to the HBV
model. However, some simplifications were made. Additional information on the HBV model is
described in the articles [31,54,73].

An analysis based on a synthetic model was selected for the study, where the calibration procedure
is performed based on the calculated catchment runoffs and taking into account known parameters.
The process for creating the ideal model is relatively simple. The calibrated model is calculated once
with known parameters. Then, the observed flow measurement (Qobs) is replaced by the simulated
flow (Qsim) results. The model knows the simulated flow at known parameters, which is equal to
the observed flow. The synthetic model eliminates measurement noise, conceptual noise, and model
design noise from the calibration process. Therefore, only the calibration noise can be analyzed in this
way. When calibrating such a model, a perfect match of the measured discharges with the simulated
discharges can be expected [18,47]. However, when calibrated under ideal conditions, it is often not
possible to re-establish (history match or to restore) the unique values of all parameters. In the synthetic
model, deviations from perfect parameter matching are due to the noise generated by a particular
calibration procedure and some nonunique parameters. This problem can be at least partially solved
by appropriately parameterizing the relevant model equations [74].

For the calibration of parameters, the GLM calibration method, together with SVD and Tikhonov
regularization, was used. Also, other calibration procedures, namely CMA–ES and GAP, were applied,
expecting to result in a perfect goodness-of-fit measure as well. We selected these two additional
procedures because they are already included in the software used for this study. CMA–ES is included
in the PEST tool package, whereas GAP is integrated into the HBV-light program for calibration
purposes. The GAP algorithm produces reasonably good results in finding a global solution to the
observed function [18].

The existing hydrological test case included in the HBV-light model was selected for the analysis.
For the test, Exercise 1 “HBV-Land” catchment case [54,55] was used. This hydrological test model
needs 16 parameters to calibrate (Table 1). The model has more than enough parameters to test.
The selected time step is one day in the period for ten years. The measured data on precipitation,
temperature, and discharges are available for the period from 1 January 1981 to 31 December 1991.
More details about HBV-Land catchment and the overall scenario of how to prepare and run a model
are described in the article [54,55] in section A1 Exercise 1.
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Table 1. List of parameters with their units and description.

Parameter Name Unit 1 Description

PERC mm/∆t maximal flow from the upper to the lower box
UZL mm threshold parameter
K0 1/∆t storage (or recession) coefficient 0
K1 1/∆t storage (or recession) coefficient 1
K2 1/∆t storage (or recession) coefficient 2

MAXBAS ∆t routing, length of the triangular weighting function
CET 1/◦C potential evaporation correction factor
TT ◦C threshold temperature

CFMAX mm/∆t degree–∆t factor
SP - seasonal variability in degree–∆t factor

SFCF - snowfall correction factor
CFR - refreezing coefficient

CWH - water-holding capacity
FC mm maximum soil moisture storage
LP - the threshold for reduction of evaporation (SM/FC)

BETA - a parameter that determines the relative contribution to runoff
from rain or snowmelt

1 ∆t in hours or days, depending on the timescale of the model.

Since one of the main aims of this study is to analyze the calibration noise, we chose a synthetic
model of a test example of the freely available HBV-Land included in the HBV-light. Moreover, with
16 parameters, we can analyze in more detail the impact of all the calibration procedures presented in
the paper (i.e., GLM, CMA–ES, and GAP) to the known parameter values. If the analyses had been
made on a model that had been calibrated with real measured output data, it would have been difficult
to distinguish between the different types of noise that impede the result [26,30,42,75]. Moreover,
another objective in this article is to test how to set up calibration parameters in a PEST control file to
get satisfying results. A calibration failure in a primary case would put to question the continuation
with a more complex model.

2.7. Model Calibration and Validation

Firstly, the GLM calibration method was performed. The procedure is schematically presented in
Figure 1. The hydrological model with input data for the period from 1 Januar 1981 to 31 December
1991 and with known model parameters shown in the second column in Table 2 was calculated.
For initial conditions, the model is expected to “warm-up” from 1 Januar 1981 to 30 October 1981.
For the model, a computed value for the period from 1 October 1981 to 31 December 1991 was assumed.
The calibration procedure was performed by using PEST [57] and PEST_HP programs [76] running
parallel on twelve logical processors on a single laptop PC. The procedure is step-by-step described in
the Supplementary Materials. The calibration was repeated using the CMA–ES procedure and with
the same control files settings as GLM (Figure 1).
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Table 2. The values of initial parameters and boundary conditions.

Parameter Name Perfect-Fit Value Initial Value Low Boundary High Boundary

PERC 0.7 0.5 0.1 2
UZL 20 30 5 50
K0 0.2 0.3 0.1 0.9
K1 0.08 0.1 0.01 0.2
K2 0.03 0.05 0.00005 0.1

MAXBAS 2.5 2 1 5
CET 0.1 0.2 0.01 0.3
TT −1 1 −2 1

CFMAX 5 3 0.5 6
SP 1 0.9 0.01 1

SFCF 0.8 0.9 0.01 1
CFR 0.05 0.045 0.04 0.06

CWH 0.1 0.05 0.01 0.2
FC 250 200 50 500
LP 0.7 0.5 0.3 1

BETA 3 2 1 5

PEST is a suite of different programs for preparation, analysis, and control of calibration procedures
and requires some knowledge and experience of this system. PEST programs require three types
of support files (Figure 1): (1) parameter template files—one for each model input file that contains
the parameters of variables that control the calibration; (2) instruction files—one file for each model
output file from which the PEST must read the observed result numbers; and (3) one control file that
provides the PEST with control parameters. The PEST control file includes the names of the relevant
model input and output files, the operational mode like estimation or regularization, values of control
variables, values of initial parameters, boundary ranges for each parameter, observed measurement
values and weights. PEST runs Model, which executes the hydrological model and the necessary pre-
and post-programs. The process is repeated until the criteria specified in the PEST control file are met.
For more detailed procedures, see PEST instructions [62,69].

The same HBV-Land model, as for the GLM calibration method, was used to calibrate the HBV-light
model by the GAP method. With the GAP evolutionary method, the procedure was repeated 100 times
to run the model 5000 times, and 1000 times additionally with Powell local optimization [18,70].
When running the GAP procedure 100 times, 100 different parameter data sets are computed, and then
the appropriate set regarding the selected goodness-of-fit criteria in Table 3 is used. Moreover, the
GAP procedure was repeated to run 100 times, but with only 13 parameters (GAP13). In this way,
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it was tested if the parameter values are closer to the initial ones than by using all 16 parameters
(GAP16), where SP, CFR, and CWH values listed in Table 1, were fixed to the perfect-fit values (Table 2).
A similar fixing of some of the parameters to avoid over-parameterization was done with CFR and
CWH described in the article [18], where K0 and UZL parameters were not used in the calibration
process with GAP.

For the initial values of the parameters, the values listed in the third column in Table 2 are taken
into account. All calibration procedures, i.e., GLM, CMA–ES, and GAP, are run with the same initial
and boundary conditions shown in Table 2.

During the calibration process, composite sensitivities were calculated and normalized for all
observations. Normalized sensitivity shows how the uncertainty in the output of a model can be
apportioned to different input parameters.

Model validation was performed using measurements of precipitation and temperature for the
period from 1 January 2001 to 31 December 2011. Similar to the calibration procedure [54,55], the
first nine months of the calculation are used to warm-up the model. Discharge data are simulated
with known parameters from the calibration for the period from 1 October 2001 to 31 December 2011.
This validation model is the same as in the calibration process, but with different input of precipitation
and temperature data. Evapotranspiration data are the same as in the calibration period.

The efficiency of a model is commonly evaluated by the Nash–Sutcliffe efficiency (NSE) coefficient,
which has been used as a standard for decades in testing calibration and model validation [29].
The quality of the calibrated model is shown in the validation process. The results of the computations
are compared with sample data that were not used in the calibration. A successful calibration model is
expected to achieve a similar NSE coefficient to that in the calibration when validating.

In addition to the Nash–Sutcliffe efficiency, other measures of the model calibration performance
were taken into account in the analysis, namely the coefficient of determination, Kling–Gupta
efficiency [77], efficiency for log (Q), flow-weighted efficiency, mean difference, efficiency for peak
flows, efficiency at low flows, low-flow difference, and volume error (Table 3). Equations of efficiency
for peak flow, model efficiency (Reff), and efficiency for low flow are the same as NSE coefficients,
differing just in different data series periods. For a peak flow, a data point with the highest observed
discharge (Qobs) value that is at least three times the average Qobs within a time window of 15 days
is used. Nevertheless, the most fundamental hydrological characteristic is the low flow, which is
a seasonal phenomenon and an integral part of every stream [78]. Low flows were identified as
challenging to calibrate in several studies [79,80]. For low flows, the arbitrary upper bound is given by
the mean annual runoff, which is a mean value of the available flow time series of the annual flow.
Q70 flows within the range of 70%-time exceedance threshold were used as low flows in this study.
The same threshold was selected in the low-flow study in a heterogeneous catchment in Slovenia [81].
For the HBV-Land catchment model, based on the calibration period data from 1 October 1981 to 31
December 1991, the calculated low-flow threshold Q70 is 0.39 mm.
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Table 3. Coefficients for calibration quality assessments, goodness-of-fit measures according to [82].

Benchmark Description Definition 1 Value for Perfect-Fit Range

Coefficient of determination (R2)
(
∑
(Qobs−Qobs)(Qsim−Qsim))2∑

(Qobs−Qobs)
2∑

(Qsim−Qsim)
2 1 −∞ to 1

Nash–Sutcliffe efficiency (NSE) 1−
∑
(Qobs−Qsim)

2∑
(Qobs−Qobs)

2 1 −∞ to 1

Efficiency for log(Q) 1−
∑
(ln Qobs−ln Qsim)

2∑
(ln Qobs−ln Qobs)

2 1 −∞ to 1

Flow-weighted efficiency 1−
∑
(Qobs/Qobs)(Qobs−Qsim)

2∑
(Qobs/Qobs)(Qobs−Qobs)

2 1 −∞ to 1

Mean difference
∑
(Qobs−Qsim)

n 365 0 −∞ to∞

Efficiency for peak flows 1−
∑
(peakQobs−peakQsim)

2∑
(peakQobs−peakQobs)

2 1 −∞ to 1

Volume error 1− 1
n
∑ |Qobs−Qsim |

Qobs
1 −∞ to 1

MARE measure 1− 1
n
∑ |Qobs−Qsim |

Qobs
1 −∞ to 1

Lindstrom measure NSE− 0.1 |
∑
(Qobs−Qsim)|∑

(Qobs)
1 −∞ to 1

Spearman rank
∑
(Robs−Robs)(Ssim−Ssim)√∑

(Robs−Robs)
2
√∑

(Ssim−Ssim)
2 1 −∞ to 1

The efficiency of low flows 1−
∑
(lowQobs−lowQsim)

2∑
(lowQobs−lowQobs)

2 1 −∞ to 1

Low-flow difference
∑
(lowQobs − lowQsim) 0 −∞ to∞

1 Qobs is the measured (observed) flow, Qsim is the modeled (simulated) flow, n is the number of time steps, and Robs
and Ssim are the ranks of Qobs and Qsim.

Usually, the coefficient of efficiency (Reff) is used in the HBV model. Reff is the Nash–Sutcliffe
efficiency coefficient (NSE) of a whole calculated period and can range from −∞ to 1. When NSE = 1,
then we get a “perfect-fit value” and it means that Qsim(t) = Qobs(t). When NSE = 0, the simulation is as
good or as poor as the constant-value prediction. On the other hand, NSE < 0 means an inferior fit.
As can be seen from the equations in Table 3, all discharges are time-dependent. The NSE coefficient
is sensitive to extreme values. Model relevance can be objectively accepted or rejected based on the
NSE greater than the threshold selected by the user. The acceptable values depend on the use of the
model and the practice of modeling. Results of calculations presented in this paper showed a good
approximation of the perfect-fit values, i.e., NSE = 1.

Moreover, the parameter’s relative deviation (%) was calculated by comparing the simulated
parameter (Psim) to perfect-fit parameter (PPF) to standardize the various metrics and allow for a
comparison of the parameters (Equation (2)).

Parameter relative deviation (%) = (PPF − Psim)/PPF × 100 (2)

3. Results and Discussion

Calibration results with the GLM calibration procedure are graphically presented in Figure 2.
Results of efficiency measures in the synthetic model with perfect-fit parameter values are given in
the second column of Table 4 with the label “Perfect-fit value.” The third column in Table 4 shows
the results of parameters from the calibration using the GLM algorithm with the use of SVD and
Tikhonov regularization. For the GLM procedure, the run time was less than 1 min. Despite the same
calculation data, slightly different results were obtained, which can be attributed to the computation
noise. This noise was most likely caused by rounding the Qsim results in the calculation.
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Figure 2. Observed and simulated discharges with the Gauss–Levenberg–Marquardt method (GLM)
calibration procedure for the calibration period from 1 January 1982 to 31 December 1991.

Table 4. Calibration results 1 from history matching of the synthetic model over ten years, i.e., 1 October
1981 to 31 December 1991.

Model Efficiency Benchmark 1 Perfect-Fit Value GLM CMA–ES GAP16 GAP13

Coefficient of determination R2 1 1 0.999999 0.999631 0.99999
Model efficiency Reff (NSE) 1 1 0.999999 0.999628 0.999989

Kling–Gupta efficiency KGE 0.999990 0.999990 0.999902 0.998184 0.999003
Kling–Gupta efficiency “nonparametric” 0.999844 0.999840 0.999774 0.997672 0.999156

Efficiency for log(Q) 1 1 0.999996 0.998712 0.999946
Flow-weighted efficiency 1 1 0.999999 0.999777 0.999994

Mean difference 0.002825 0.002860 0.023888 -0.53402 0.12956
Efficiency for peak flows 1 1 0.999997 0.998706 0.999978

Volume error 0.999990 0.999990 0.999919 0.998193 0.999562
MARE measure 0.999453 0.999450 0.999348 0.990692 0.996568

Lindstrom measure 1 1 0.999991 0.999447 0.999946
Spearman rank 1 1 0.999999 0.999688 0.999987

Efficiency of low flows 1 1 0.999969 0.983838 0.999292
Low-flow difference 0 0 0.044 −1.307 −1.063

1 Results are rounded to the sixth decimal.

The NSE of the computation is quite high, as shown in the third column in Table 4. Deviations
merely appeared after the tenth decimal place in the NSE (NSE perfect-fit value = 0.9999998607; NSE
GLM = 0.9999998605) and after the fifth decimal place in the mean differences benchmark, which can
be almost equated with the perfect-fit value. The performance of calibration with CMA–ES, GAP13,
and GAP16 is shown in columns 4–6 of Table 4. The overall comparison of NSE of all four procedures
applied in this study is shown in Figure 3. Based on NSE, one can notice an excellent performance also
of CMA–ES and GAP13, while GAP16 reached the lowest NSE.
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PEST_HP calculates parameter sensitivity during the calibration process itself. The normalized
sensitivity in the second column of Table 5 shows how the uncertainty in the output of a model can be
distributed to different parameters. The TT (temperature threshold) parameter is the most sensitive
parameter with normalized sensitivity 1. In contrast, the least sensitive is CFR (refreezing coefficient)
and CWH (water-holding capacity) parameters with normalized sensitivities of 0. The results of the
calculated parameters with GLM, CMA–ES, and GAP are shown in columns 3–6 of Table 5. The results
calibrated by the GLM procedure in the third column of Table 5 give a value close to the perfect-fit
parameter value of Table 2. The differences occur only from the fourth to the fifth decimal place as a
result of the calibration noise shown in column 3 of Table 5. The parameter values calibrated by the GAP
procedure give relatively good results (GAP16, NSE = 0.9996) compared to the existing hydrological
practice. However, they are significantly worse compared to GLM, as shown in Tables 5 and 6.

Table 5. The values of the individual parameters determined in the calibration procedure.

Parameter
Name

Normalized
Sensitivity GLM CMA-ES GAP16 GAP13

PERC 0.03 0.700005 0.7000623 0.697142508 0.693526262
UZL 0.07 20.0001 19.99882 19.95660857 20.11814985
K0 0.03 0.20001 0.1998579 0.204047194 0.20075344
K1 0.04 0.08 0.08000101 0.079860003 0.0799286
K2 0.01 0.03 0.0300044 0.030148466 0.029351392

MAXBAS 0.07 2.49999 2.499148 2.512553604 2.500201514
CET 0.08 0.100004 0.100003 0.102796635 0.100969107
TT 1.00 −0.99998 −1.000009 −0.99999999 −0.99999592

CFMAX 0.02 5.00016 5.034117 5.346262187 4.984995411
SP 0.13 0.999978 0.9910489 0.879212318 -

SFCF 0.23 0.799992 0.7997364 0.813747468 0.797604941
CFR 0.00 0.050009 0.05129717 0.044801671 -

CWH 0.00 0.100002 0.1000745 0.064851987 -
FC 0.11 250 250.0022 244.8327906 249.3696183
LP 0.12 0.700005 0.7000338 0.677129184 0.700118925

BETA 0.06 3.000014 3.000171 2.871328415 3.005579383
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Table 6. Parameter relative deviation to “perfect fit” in the calibration procedure.

Parameter Name GLM % CMA–ES % GAP16 % GAP13 %

PERC 0 −0.01 0.41 0.92
UZL 0 0.01 0.22 −0.59
K0 0 0.07 −2.02 −0.38
K1 0 0 0.17 0.09
K2 0 −0.01 −0.49 2.16

MAXBAS 0 0.03 −0.5 −0.01
CET 0 0 −2.8 −0.97
TT 0 0 0 0

CFMAX 0 −0.68 −6.93 0.3
SP 0 0.9 12.08 -

SFCF 0 0.03 −1.72 0.3
CFR −0.02 −2.59 10.4 -

CWH 0 −0.07 35.15 -
FC 0 0 2.07 0.25
LP 0 0 3.27 −0.02

BETA 0 −0.01 4.29 −0.19

The advantage of using the GLM with SVD and Tikhonov regularization in the calibration process
is evident by comparing the values of individual relative deviations concerning the “perfect-fit” of the
parameters in Table 6.

In the regularization process (GLM), almost a perfect match between the true and the calibrated
parameters is achieved, deviating by only 0.02% of CFR (refreezing coefficient) shown in the second
column in Table 6. This small deviation (noise) is probably a consequence of the computation.
Differences occur after the third decimal place. They can be explained by the equation for calculating
refreezing meltwater (RM) defined as RM = CFR CFMAX (TT-T (t)) and containing three parameters
and one variable [18,54,72,83]. If a parameter such as CFR has independent relationships with other
parameters, it cannot be adequately calculated due to over-parameterisation. It is therefore advisable
to determine the value of such a parameter based on the expertise of the modeler. As the catchment
has no altitude zones, the occurrence of refreezing meltwater was also relatively rare in the observed
period. The results of the calibration procedure with GLM are graphically presented in Figures 4 and 5.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 20 

Table 6. Parameter relative deviation to “perfect fit” in the calibration procedure. 

Parameter 
name 

GLM 
% 

CMA–ES 
% 

GAP16 
% 

GAP13 
% 

PERC 0 −0.01 0.41 0.92 
UZL 0 0.01 0.22 −0.59 
K0 0 0.07 −2.02 −0.38 
K1 0 0 0.17 0.09 
K2 0 −0.01 −0.49 2.16 

MAXBAS 0 0.03 −0.5 −0.01 
CET 0 0 −2.8 −0.97 
TT 0 0 0 0 

CFMAX 0 −0.68 −6.93 0.3 
SP 0 0.9 12.08 - 

SFCF 0 0.03 −1.72 0.3 
CFR −0.02 −2.59 10.4 - 

CWH 0 −0.07 35.15 - 
FC 0 0 2.07 0.25 
LP 0 0 3.27 −0.02 

BETA 0 −0.01 4.29 −0.19 

In the regularization process (GLM), almost a perfect match between the true and the calibrated 
parameters is achieved, deviating by only 0.02% of CFR (refreezing coefficient) shown in the second 
column in Table 6. This small deviation (noise) is probably a consequence of the computation. 
Differences occur after the third decimal place. They can be explained by the equation for calculating 
refreezing meltwater (RM) defined as RM = CFR CFMAX (TT-T (t)) and containing three parameters 
and one variable [18,54,72,83]. If a parameter such as CFR has independent relationships with other 
parameters, it cannot be adequately calculated due to over-parameterisation. It is therefore advisable 
to determine the value of such a parameter based on the expertise of the modeler. As the catchment 
has no altitude zones, the occurrence of refreezing meltwater was also relatively rare in the observed 
period. The results of the calibration procedure with GLM are graphically presented in Figures 4 and 
5. 

 
Figure 4. The absolute difference to Qobs for different calibration procedures in the calibration period 
from 1 March 1985 to 31 March 1985. 

On the other hand, parameter values obtained by calibration using the GAP algorithm differ 
significantly from the true values used for the calculation of the HBV-Land model (Figure 4, Figure 
5, and Table 6). In the case of GAP16, 10 of 16 parameters deviate by more than 1%; SP, CFR, and 
CWH parameters deviate even by 12%, 10%, and 35%, respectively. Moreover, the total parameter 
deviation obtained by the GAP16 procedure is 82%. CMA–ES performed better than GAP but worse 
than GLM. The largest deviation (2.6%) in CMA–ES is again observed for the CFR parameter. The 

Figure 4. The absolute difference to Qobs for different calibration procedures in the calibration period
from 1 March 1985 to 31 March 1985.



Appl. Sci. 2020, 10, 3841 13 of 20

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 20 

second-largest deviation (0.7%) is found for the CFMAX parameter. The total deviation of 
parameters in case of CMA–ES is 6%. 

 
Figure 5. Graphical presentation of calibrated parameters with different optimizers. 

When the number of parameters in a calibration set was reduced from 16 to 13, a more efficient 
GAP calibration with the total deviation of parameters of 6% resulted. One hundred optimized 
parameter sets resulted in a maximum, minimum, and median NSE equal to 0.999989, 0.980133, and 
0.994431, respectively. For comparing GAP16 with other calibration methods, the parameter set 
obtained with maximum NSE was selected. 

Many researchers found that low-flow calibration is quite problematic [79,80]. In this study, the 
only calibration using the GLM procedure gave a perfect fit in low flows (Table 4) without using the 
additional criteria to calibrate low-flow data series. 

CMA–ES parameter relative deviation to history matching is close to GLM, as shown in the 
second column of Table 6. The calibration time can sometimes be significant. The run time depends 
on computer power, the operating system, and calibration process termination criteria. We need to 
look at this metric relatively and see how much one method is faster or slower than the other. For the 
selected case of the hydrological model calibration, the calculation using the parallel computing 
according to the GLM procedure takes 50 s (Figure 6), the CMA–ES parallel calculation takes one 
hour, and one GAP calculation takes two minutes with 6000 model runs. To achieve the results 
shown in Table 6, one hundred repetitions of GAP calculations take about three hours and ten 
minutes. 

Figure 5. Graphical presentation of calibrated parameters with different optimizers.

On the other hand, parameter values obtained by calibration using the GAP algorithm differ
significantly from the true values used for the calculation of the HBV-Land model (Figures 4 and 5,
and Table 6). In the case of GAP16, 10 of 16 parameters deviate by more than 1%; SP, CFR, and CWH
parameters deviate even by 12%, 10%, and 35%, respectively. Moreover, the total parameter deviation
obtained by the GAP16 procedure is 82%. CMA–ES performed better than GAP but worse than GLM.
The largest deviation (2.6%) in CMA–ES is again observed for the CFR parameter. The second-largest
deviation (0.7%) is found for the CFMAX parameter. The total deviation of parameters in case of
CMA–ES is 6%.

When the number of parameters in a calibration set was reduced from 16 to 13, a more efficient
GAP calibration with the total deviation of parameters of 6% resulted. One hundred optimized
parameter sets resulted in a maximum, minimum, and median NSE equal to 0.999989, 0.980133,
and 0.994431, respectively. For comparing GAP16 with other calibration methods, the parameter set
obtained with maximum NSE was selected.

Many researchers found that low-flow calibration is quite problematic [79,80]. In this study, the
only calibration using the GLM procedure gave a perfect fit in low flows (Table 4) without using the
additional criteria to calibrate low-flow data series.

CMA–ES parameter relative deviation to history matching is close to GLM, as shown in the
second column of Table 6. The calibration time can sometimes be significant. The run time depends on
computer power, the operating system, and calibration process termination criteria. We need to look at
this metric relatively and see how much one method is faster or slower than the other. For the selected
case of the hydrological model calibration, the calculation using the parallel computing according to
the GLM procedure takes 50 s (Figure 6), the CMA–ES parallel calculation takes one hour, and one
GAP calculation takes two minutes with 6000 model runs. To achieve the results shown in Table 6, one
hundred repetitions of GAP calculations take about three hours and ten minutes.
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Figure 6. CPU utilization when HBV-Land is calibrated with parallel PEST.

The GLM procedure calculated the hydrological model 533 times with 14 iterations, and the
CMA–ES ran the model 12,937 times with 925 iterations. For one hundred repetitions with the GAP
procedure, 603,150 model runs of the model are required. Better efficiency of the GLM procedure
regarding the number of required model calculations in comparison with the methods of evolutionary
CMA–ES and GAP is hence more than evident. Moreover, the GLM calibration process in all cases
calculated the same NSE value and values of calibrated parameters remained the same, regardless of
the number of repetitions of the calibration process. The same repeating results can be attributed to
the nonstochastic behavior in GLM calibration procedures [84], in contrast to stochastic evolutionary
procedures (CMA–ES and GAP in this study). The minimum error variance in the objective function
was obtained with the GLM procedure in all cases.

The validation results were similar to those of the calibration but slightly worse for all procedures.
However, especially for models calibrated using GAP, the differences are relatively more considerable.
Validation results with the GLM calibration procedure are graphically presented in Figure 7. For the
model based on the GLM calibration, the NSE for the calibration and validation period has the same
value NSE = 1 (Table 7). For the model based on the GAP calibration parameters, NSE decreases from
0.9996 for the calibration period to 0.9983 for the validation period (Table 7).

Brilly et al. [85], as part of the broader study, reported about using the proposed combined
procedure, implemented in the PEST software and on a real catchment, i.e., the Savinja River catchment
in Slovenia. The average NSE value for the model calibration of 21 subcatchments was 0.85, suggesting
that the proposed methodology has great potential also for modeling (multiple) real river catchments.
However, this is the first paper testing the use of the combined GLM procedure on a synthetic
rainfall–runoff model, where all other types of noise, except calibration noise, are excluded from
the model. A comparison of results of all four calibration approaches used in this study shows that
calibration noise was excluded only with the combined GLM method.
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Table 7. Validation results 1 of the HBV-Land model for the period 1 October 2001 to 31 December 2011.

Model Efficiency Benchmark Perfect-Fit Value GLM CMA–ES GAP16 GAP13

Coefficient of determination R2 1 1 0.999995 0.998259 0.999989
Model efficiency NSE 1 1 0.999994 0.998092 0.999987

Kling-Gupta efficiency KGE 0.999987 0.99998 0.99924 0.984518 0.998326
Kling-Gupta efficiency “non-parametric” NPE 0.999811 0.99981 0.999562 0.987471 0.998312

Efficiency for log(Q) LogReff 1 1 0.999992 0.993776 0.999872
Flow-weighted efficiency FlowWeightedNSE 1 1 0.999995 0.998288 0.999996

Mean difference −0.001665 −0.0035 0.029267 −2.79455 −0.31087
Efficiency for peak flows 1 1 0.999982 0.995386 0.999985

Volume error 0.999993 0.99999 0.999879 0.988476 0.998718
MARE measure 0.999205 0.99921 0.998851 0.970793 0.994208

Lindstrom measure 1 1 0.999982 0.99694 0.999859
Spearman rank 1 1 0.999996 0.998679 0.999981

Efficiency for low flows 1 1 0.999977 0.980824 0.999784
Low-flow difference 0.001 −0.007 0.232 − 11.999 −2.27

1 Results are rounded to the sixth decimal.

4. Conclusions

In this paper, the enhanced Gauss–Levenberg–Marquardt (GLM) procedure in combination with
the singular value decomposition (SVD) and Tikhonov regularization is presented and applied to
calibrate the conceptual hydrological model. The procedure was evaluated and compared with
two other global calibration techniques (GAP and CMA–ES). Based on the results of this study, the
following conclusions can be drawn regarding the presented combined used of GLM, SVD, and
Tikhonov regularization:

• The combined GLM procedure enabled an almost perfect match between true and calculated
parameters. Only one parameter out of 16 showed a deviation of only 0.02%.

• By knowing the true model parameters, various calibration parameter settings can be tested.
With the appropriate parameter settings of calibration, the calibration noise was reduced, and the
calibration efficiency was improved.

• Only with the GLM procedure, the precise values of parameters on the HBV-Land model for both
peak and low flows were obtained. In other words, only the combined GLM process was able to
eliminate the calibration noise in the case of simulations based on the synthetic model runoff.

• The run time of the combined GLM procedure was significantly shorter than those of the compared
procedures. For the same case study, the combined GLM calibration procedure was approximately
60 and 200-times shorter than of CMA–ES and GAP, respectively.
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• The GLM calibration process in all cases calculated the same NSE value, and values of calibrated
parameters remained the same, regardless of the number of repetitions of the calibration process.
The same repeating results can be attributed to the nonstochastic behavior in GLM calibration
procedures [84], in contrast to stochastic evolutionary procedures (CMA–ES and GAP in this
study). The minimum error variance in the objective function was obtained with the GLM
procedure in all cases.

• The noise in the calculation results with the GLM method was practically the same in either
calibrating or validating the procedure. In the modeling, therefore, only computational noise
remained in the results.

• The result of calibration with the GLM procedure, which would be stuck at the local minimum,
was not detected in this study. The GLM procedure has proven to be very useful in solving linear
inverse problems. By introducing Tikhonov regularization into an inverse solution, we successfully
calculated unique parameters. With successive iterations, the GLM method achieved model
calibration, regardless of the nonlinear relationship between model outputs and model parameters.

• The calibration of the synthetic model gave an insight into the noise generated and the deficiencies
in the design of the calibration process. However, the GLM calibration process itself requires
expertise in hydrological modeling as well as in the calibration process. The lack of expertise is
also the reason that the GLM process has not yet been widely implemented in practice to calibrate
distributed hydrological models. For this reason, a Supplementary Materials section was prepared
to bring the procedure closer to potential users.

Results of this study suggest that the proposed procedure (detailed explanation in the
Supplementary Materials—A Quickstart Guide to HBV-Light Hydrological Model Calibration Using
PEST) has a great potential to address many open challenges, such as calibration of multiple
subcatchments at once instead of one to the other and from top to bottom.

Supplementary Materials: The following is available online at http://www.mdpi.com/2076-3417/10/11/3841/s1,
A Quickstart Guide to HBV-Light Hydrological Model Calibration Using PEST.
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